首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to investigate the physicochemical characteristics and storage stability of water-in-oil-in-water (W/O/W) emulsions and spray-dried red ginseng extract capsules (RGEC) prepared using different secondary coating materials such as maltodextrin (MD), whey protein concentrate (WPC), or arabic gum (AG). The particle sizes of W/O/W emulsions and spray-dried RGEC coated with MD were considerably lower than those of W/O/W emulsions and spray-dried RGEC coated with WPC or AG. The zeta-potential value (?36 mV) of spray-dried RGEC coated with MD was significantly higher than that of spray-dried RGEC coated with WPC or AG (< 0.05), indicating that spray-dried RGEC coated with MD were much more stable than spray-dried RGEC coated with WPC and AG. In the storage stability study, it was found that the refrigerator temperature (4°C) was preferred for storing spray-dried samples for a long time. Based on these results, it was confirmed that MD could be the most efficient coating material for W/O/W emulsions and nano-sized spray-dried RGEC.  相似文献   

2.
The effects of phenolic-rich extracts from avocado peels (AP) and seeds (AS) on the colloidal and the lipid oxidative stability of oil-in-water (O/W) emulsions/nanoemulsions were evaluated. For this purpose, the interfacial tension (IFT) of avocado oil droplets in the presence of extracts and surfactants (low methoxyl pectin, LMP; Tween 80, T80), individually or combined, was assessed. Individually, T80 led to the lowest IFT values (4.25 ± 0.02 mN/m), followed by AS and AP extracts (9.27 ± 0.86 mN/m and 12.31 ± 0.10 mN/m, respectively) and LMP (14.88 ± 0.05 mN/m). Regarding particle size, the emulsions containing AP and AS extracts were smaller (1.45 ± 0.10 μm and 1.11 ± 0.03 μm, respectively), and stabler, than blank emulsions (4.05 ± 0.51 μm). Conversely, the extracts, especially AS extract, reduced the stability of nanoemulsions causing a 24-fold particle size increase. Nevertheless, AP and AS extracts reduced the formation of secondary oxidation products in emulsions/nanoemulsions. These findings provide novel insights into the potential use of avocado waste.  相似文献   

3.
Grape (Kyoho) skin, used to retard lipid oxidation in edible oil foods, was investigated to reduce lipid oxidation in an oil-in-water (O/W) emulsion during 20 day of storage. The antioxidant efficacy of Kyoho skin extracts in O/W emulsions was determined by the measurement of secondary oxidation products. Moreover, principal component analysis (PCA) was conducted to determine similarities between emulsions treated with or without Kyoho skin extracts and standards. The data revealed that Kyoho skin extracts exhibited >93% inhibition and reported a similar p-anisidine (4.30–20.71) and TBARS (6.08–11.15 mg MDA L−1) values over the standards during 20 day of storage. PCA (PCs 1 (51.83%) and 2 (18.85%)) demonstrated a similarity in the contribution of Kyoho skin extracts over the synthetic antioxidants in O/W emulsion. Overall, these findings highlighted the possibility of using Kyoho skin extracts as natural antioxidants to decrease oxidative rancidity in foods.  相似文献   

4.
Model infant formula emulsions containing 15.5, 35.0 and 70.0 g L−1 protein, soybean oil and maltodextrin (MD), respectively, were prepared. Emulsions were stabilised by whey protein hydrolysate (WPH) + CITREM (9 g L−1), WPH + lecithin (9 g L−1) or WPH conjugated with MD (WPH–MD). All emulsions had mono-modal oil droplet size distributions post-homogenisation with mean oil droplet diameters (D4,3) of <1.0 μm. No changes in the D4,3 were observed after heat treatment (95 °C, 15 min) of the emulsions. Accelerated storage (40 °C, 10 d) of unheated emulsions resulted in an increase in D4,3 for CITREM (2.86 μm) and lecithin (5.36 μm) containing emulsions. Heated emulsions displayed better stability to accelerated storage with no increase in D4,3 for CITREM and an increase in D4,3 for lecithin (2.71 μm) containing emulsions. No increase in D4,3 over storage was observed for unheated or heated WPH–MD emulsion, indicating its superior stability.  相似文献   

5.
Flavonoids have attracted attention due to pharmacological and antioxidative activities. The effects of flavonoids on the physical and oxidative stabilities of lecithin emulsified soybean oil-in-water (O/W) emulsions were investigated at 25°C during 29 days of storage. Addition of 100 ppm hesperidin, hesperitin, rutin, or quercetin improved the physical stability of O/W emulsions but did not change particle size values, compared to a control with no flavonoids during storage. Quercetin showed the highest antioxidant activity for inhibition of lipid oxidation based on lowered lipid hydroperoxide formation and 2-thiobarbituric acid reactive substances values in emulsions, followed by rutin, hesperitin, and hesperidin. Hesperidin and hesperitin did not affect antioxidative activities in O/W emulsions under metal ion-catalyzed conditions. Addition of hesperidin, hesperitin, rutin, and quercetin to soybean oil O/W emulsions improved the physical and oxidative stability of emulsions lacking added metal ions.  相似文献   

6.
Iron (Fe3+) was encapsulated within the internal aqueous phase of water-in-oil-in-water (W/O/W) emulsions, and then the impact of this iron on the oxidative stability of fish oil droplets was examined. There was no significant change in lipid droplet diameter in the W/O/W emulsions during 7 days storage, suggesting that the emulsions were stable to lipid droplet flocculation and coalescence, and internal water diffusion/expulsion. The initial iron encapsulation (4 mg/100 g emulsion) within the internal aqueous phase of the water-in-oil (W/O) emulsions was high (>99.75%), although, a small amount leaked out over 7 days storage (≈10 μg/100 g emulsion). When W/O/W emulsions were mixed with fish oil droplets the thiobarbituric acid-reactive substances (TBARS) formed decreased (compared to fish oil droplets alone) by an amount that depended on iron concentration and location, i.e., no added iron < iron in external aqueous phase < iron in internal aqueous phase. These differences were attributed to the impact of W/O droplets on the concentration and location of iron and lipid oxidation reaction products within the system.  相似文献   

7.
The aim of this study was to produce a functional emulsion product enriched with anchovy (Engraulis encrasicholus) oil. Tomato and garlic extracts were added to perform oxidative stability. Tomato and garlic extracts were added to avoid oxidative degradation in such a product. The plant extracts delayed the formation of primary and secondary oxidation products. The value of conjugated diens (3.07 ± 0.15) was markedly low in the emulsions containing garlic extract at the end of the storage period. The p–Av values of the emulsions treated with the extracts were significantly (P < 0.01) lower than untreated samples. TBARS formation increased slightly, therewithal statistical difference was not observed in the samples treated with garlic extract during the storage. Strong odour and flavour of the garlic suppressed the odour of fish oil. The panellists preferred the flavour, odour and aroma characteristics of the samples treated with the extracts.  相似文献   

8.
Abstract: This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)‐3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil‐in‐water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil‐in‐water‐in‐oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α‐Tocopherol), or both. Spreads containing α‐Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5 °C, while p‐Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G′ values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). Practical Application: Lipid oxidation is a major problem in omega‐3 rich oils, and can cause off‐odors and off‐flavors. Double emulsion technology was used to produce omega‐3 enriched spreads (O/W/O emulsions), wherein the omega‐3 oil was incorporated into the inner oil phase, to protect it from lipid oxidation. Antioxidants were added to further protect the spreads by reducing lipid oxidation. Spreads produced had good oxidative stability and possessed functional (omega‐3 addition) properties.  相似文献   

9.
The emulsifying properties of actomyosin (AM) of mantle and fins obtained periodically from frozen-stored squid were investigated. Oil in water (O/W) emulsions and their stability were studied by optical characterisation. Both emulsions showed that the initial backscattering (BS) decreased after 3 months of frozen storage. O/W emulsions formulated with AM of squid mantle showed certain stability during the first 20 min, and presented destabilisation during the remaining analysed time, reaching a 20% of BS, approximately. However, for emulsions formulated with AM of fins, the BS diminution was recorded between 30 and 45 min, indicating a higher stability as a function of time with respect to the mantle. The size distribution of emulsions prepared after short times of storage presented three droplet size populations. With increasing the time of frozen storage, the size distribution changed from trimodal to bimodal: the large population decreased until it disappeared and the population with medium size increased at long time of frozen storage. The emulsions formulated with AM of squid fins presented a similar behaviour than emulsions of mantle. QuickScan profiles allowed discriminating creaming and coalescence processes to both emulsions mainly at short time of frozen storage. The emulsion prepared with AM from squid fins was further flocculated than emulsion of mantle. Actomyosin from fin squid exhibits the best properties as emulsifier agents of O/W emulsions. These results suggest that a short frozen-storage period can favour the emulsifying properties of actomyosin obtained from squid mantle and fins. On the other hand, the structure of flocs would affect positively the stability of emulsions.  相似文献   

10.
Bagasse, a by-product from raw sugar factories, is conventionally burned for energy production. In this study, bagasse extracts from hydrothermal liquefaction (HTL) treatment (160 °C, 1 MPa and 30 min) with a carbohydrate content of 510.3 mg g−1 and 0.5 mg g−1 of total phenols were applied as emulsifiers in oil-in-water (O/W) emulsions. Bagasse extracts from HTL (0.5–4 wt%) lowered the interfacial tension between oil–water interphase from 19.8 to 14.0 mN m−1, owing possibly to the surface-active hydrophilic carbohydrate-hydrophobic lignin complexes in the extracts (lignin content: 7.1% w/w). Emulsions stabilised by bagasse extracts from HTL with average droplet size, dav of 0.79 μm were comparable with gum arabic (GA), dav of 2.24 μm after 11 days at 25 °C. Bagasse extracts containing biopolymers have the potential for industrial applications involving emulsion systems; therefore, HTL treatment of bagasse without any solvents can be regarded as an effective tool for producing natural emulsifiers.  相似文献   

11.
We investigated the molecular characteristics of 4-α-glucanotransferase (4αGTase)-modified rice starch (MRS) and corn starch (MCS) gels and the NaCl release properties depending on their mechanical properties. Also, encapsulation efficiency (EE) and oil globule size of water-in-oil-in-water (W/O/W) emulsions containing MRS or MCS in the inner aqueous phase (W1) with NaCl as a model core material were measured after preparation and 14 days of storage. The characteristics of MRS and MCS were examined by analyzing amylose content, molecular fine structure, microstructure, and mechanical properties to better understand their associations with emulsion stability. At 20 % concentration, the gel strength of MCS (~105 pa) was greater than that of MRS (~103 pa) as MCS had higher apparent amylose content than MRS. The rate of NaCl release from the gel was highly correlated with the gel strength that depended on the type and concentration of the enzymatically-modified starch. As the gel strength increased, EE of freshly prepared and stored W/O/W emulsions increased. Osmotic swelling of NaCl-containing W/O/W was significantly reduced with the incorporation of the modified starch gels in W1 phase. These results indicated that physicochemical properties of 4αGTase-modified starch gels in W/O/W emulsions largely affected the encapsulation efficiency and stability of the emulsions, which could be utilized to formulate W/O/W emulsions with improved stability and the potential for broader applications.  相似文献   

12.
在以猪血浆蛋白水解物(porcine plasma protein hydrolysates,PPPH)作为乳化剂所制备的水包油(oil-in-water,O/W)型乳状液中添加氧化单宁酸(oxidised tannic acid,OTA),研究OTA添加量对乳状液贮藏期间物理稳定性的改善,测定乳状液在贮藏期间的粒径、Zeta电位、絮凝指数、凝结指数和乳状液中蛋白质分配系数的变化趋势,并且利用激光共聚焦显微镜观察乳状液的微观结构。结果表明,在乳状液1~10 d的贮藏期间,与对照组相比,随着OTA添加量的增加,D[3,2]、D[4,3]、絮凝指数以及凝结指数显著降低(P<0.05),且在OTA添加量1%时达到最低(P<0.05);相反,Zeta电位随着OTA添加量的增加显著提高(P<0.05),且在OTA添加量1%时达到最高(P<0.05)。同时,OTA的添加在一定程度上促进了PPPH的交联,能够显著增加其在乳状液界面蛋白膜表面的分布(P<0.05);另外,乳状液的微观结构进一步验证OTA添加量1%的处理组能够在油滴表面形成最紧密和厚重的界面蛋白膜。研究结果表明,在PPPH制备的O/W型乳状液中添加OTA,能够显著提高其在整个储藏期间的物理稳定性,为OTA在乳状液食品中的应用提供了实验参考。  相似文献   

13.
W/O/W emulsion is an emerging system in developing new functional and low-calorie food products. The aim of this study is to produce food-grade monodisperse water-in-oil-in-water (W/O/W) emulsions loaded with a hydrophilic bioactive oleuropein. W/O/W emulsions were prepared via high-pressure homogenization and subsequent microchannel (MC) emulsification. The internal aqueous phase was a 5-mM sodium phosphate buffer containing d(+)-glucose (5 wt.%) and oleuropein (0.1–0.7 wt.%). The oil phase consisted of soybean oil and tetraglycerin monolaurate condensed ricinoleic acid esters (TGCR; 3–8 wt.%). The external aqueous phase was a 5-mM sodium phosphate buffer containing d(+)-glucose (5 wt.%) and decaglycerol monolaurate (1 wt.%). Oleuropein-loaded submicron W/O emulsions with average droplet diameters as small as 0.15 μm and monomodal droplet size distributions were prepared by high-pressure homogenization when applying high TGCR concentrations of 5–8 wt.% and low oleuropein concentrations of 0.1–0.3 wt.%. Monodisperse oleuropein-loaded W/O/W emulsions with average W/O droplet diameters of around 27 μm and coefficients of variation of below 5 % were successfully prepared when using a silicon MC array plate with wide channels of 5-μm depth and 18-μm width. The monodisperse W/O/W emulsions prepared at high TGCR concentrations and low oleuropein concentrations were the most stable during 40 days of storage. The adsorption behavior of oleuropein at the internal aqueous–oil interface was relevant to W/O/W emulsions microstructure and stability. The results are believed to provide useful information for successfully preparing stable monodisperse W/O/W emulsions loaded with hydrophilic functional compounds. The surface activity of the loaded material seems to be a key parameter in optimizing the formulation of W/O/W food emulsion.  相似文献   

14.
The rheological properties and physical stability of mangosteen (Garcinia mangostana L.) extract in oil-in-water (MIO/W) emulsions were investigated. Rheological study on the emulsions exhibited Newtonian flow behavior. The 20?wt.% emulsion showed higher apparent viscosity than 10?wt.% MIO/W sample. The effects of salt (NaCl) concentration (0, 50, 100, and 200?mM) and heat treatment (70?°C) on the stability of the emulsions were also examined. Heat (70?°C)- and NaCl (100 and 200?mM)-treated emulsions showed creaming and droplet aggregation on storage for a period of 60?days. The 10?wt.% MIO/W emulsions stored at 4?°C showed a homogeneous distribution of oil droplets with good stability to creaming and viscosity independent of shear stress (i.e., a Newtonian liquid).  相似文献   

15.
In this work, formulation and characterization of oil-in-water (O/W) emulsions loaded with rutin were successfully overhead. We investigated the effect of homogenization pressure on the mean droplet size, droplet size distribution, physical stability, and rutin retention of these emulsions. O/W emulsions with a mean droplet size (d 3,2) of about 150 nm and a span of nearly the unit were formulated by microfluidization at the homogenization pressure 20–150 MPa. The O/W emulsion droplets loaded with rutin were physically stable in terms of variations of d 3,2 and span during 30 days of storage in the dark condition at 4 and 25 °C. The creaming velocity was characterized using centrifugal method showing a relative good shelf life. HPLC analysis demonstrated that 71–85% of initial rutin was retained in the fresh O/W emulsions and declined to 22–35% (w/w) for 30-day storage at 25 °C. Antioxidant activity assays confirmed that rutin-loaded emulsion participated in the antioxidant activity after encapsulation similarly to pure rutin. These results indicate that O/W emulsion systems can function as potential delivery systems to enhance bioavailability to encapsulate liposoluble antioxidant rutin for potential applications in the food industry.  相似文献   

16.
Freezing and thawing of oil‐in‐water (O/W) emulsion‐type foods bring about oil–water separation and deterioration; hence, the effects of freezing and thawing conditions on the destabilization of O/W emulsions were examined. The freezing rate and thawing temperature hardly affected the stability of the O/W emulsion. O/W emulsions having different oil fractions were stored at temperatures ranging from –30 to –20 °C and then thawed. The stability after thawing depended on the storage temperature, irrespective of the oil fraction of the emulsion. A good correlation was found between the time at which the stability began to decrease and the time taken for the oil to crystalize. These results indicated that the dominant cause for the destabilization of the O/W emulsion during freezing and thawing is the crystallization of the oil phase and that the effects of the freezing and thawing rates on the stability are insignificant.  相似文献   

17.
Topical bioavailability of lipid‐ and water‐soluble vitamins is a critical issue for protecting or anti‐ageing formulations. Using 17‐day‐old SkinEthic® reconstructed human epidermis, we investigated (at 34°C) the role of lemon EO in enhancing the penetration of α‐tocopherol (E) and retinyl acetate (A), pyridoxine (B6) and ascorbic acid (C), released from O/W or W/O emulsions. D‐limonene, α‐pinene and p‐cymene (65.9, 2.2 and 0.5%w/w of the oil) had skin permeability coefficients Ps (10?3 cm h?1) of 0.56 ± 0.03 (or 0.73 ± 0.02), 0.72 ± 0.05 (or 0.98 ± 0.05) and 0.84 ± 0.04 (or 1.14 ± 0.04), respectively, when incorporated in a W/O (or O/W) emulsion. Vitamins B6, C and A had Ps values of (3.0 ± 0.4) × 10?3, (7.9 ± 0.6) × 10?3 and (0.37 ± 0.02) × 10?5 cm h?1, respectively, and their flux through the skin was enhanced by a factor of 4.1, 3.4 and 5.8, respectively, in the presence of lemon EO. The penetration of vitamin E was nine‐fold enhanced. Lemon EO produced only reversible modification of TEWL, and it is a safe and effective penetration enhancer for topical administration of lipid‐ and water‐soluble vitamins.  相似文献   

18.
The objective of this study was to investigate the influence of interfacial composition on the in vitro digestion of emulsified lipids coated by various emulsifiers by pancreatic lipase. Sodium caseinate, whey protein isolate (WPI), lecithin and Tween 20 were used to prepare corn oil-in-water emulsions (3 wt% oil). Pancreatic lipase (1.6 mg/mL) and/or bile extract (5.0 mg/mL) were added to each emulsion and the particle charge, droplet aggregation, microstructure and free fatty acids released were measured. In the absence of bile extract, the amount of free fatty acids released per unit volume of emulsion was much lower for lipid droplets coated by Tween 20 (13 ± 16 μmol ml−1) than those coated by lecithin (75 ± 20 μmol ml−1), sodium caseinate (220 ± 24 μmol ml−1) or WPI (212 ± 6 μmol ml−1). In the presence of bile extract, there was an appreciable increase in the amount of free fatty acids released in all the emulsions, with the most appreciable effects being observed in the Tween 20-stabilized emulsions. The stability of the emulsions to droplet flocculation and coalescence during hydrolysis was also strongly dependent on emulsifier type, with the WPI emulsions being the least stable and the Tween 20 emulsions being the most stable. Our results suggest that the access of pancreatic lipase to emulsified fats decreases in the following order: proteins (caseinate and WPI) > phospholipids (lecithin) > non-ionic surfactants (Tween 20). These results may have important consequences for the design of foods with either increased or decreased lipid bioavailability.  相似文献   

19.
The effects of rosemary extract at different levels (%1, R1, and %2, R2) on the quality of vacuum‐packed sardine in terms of sensory, biochemical (thiobarbituric acid, total volatile basic nitrogen, peroxide value and free fatty acids) and microbiological analyses (total viable counts) were investigated. Fish were filleted and divided into three groups. First group was used as the control (C) without rosemary extract, second group was treated with 1% rosemary extracts (10 g L?1) for 2 min (R1), and the third was treated with 2% rosemary extracts (20 g L?1) for 2 min (R2). Thirty fillets per litre were used. After that, all groups were vacuum‐packed in polyethylene bags. The samples were stored in the refrigerator condition (4 ± 1 °C) over the storage period of 20 days. The results showed that the use of rosemary extract improved the sensory quality of both raw and cooked sardine, most preferably sardine treated with 1% of rosemary. Biochemical analysis showed that the use of 2% of rosemary extract were found to be most effective (P < 0.05) in controlling the rate of lipid oxidation.  相似文献   

20.
Water‐in‐oil (W/O) emulsions can be used to encapsulate and control the release of bioactive compounds for nutrition fortification in fat‐based food products. However, long‐term stabilization of W/O emulsions remains a challenging task in food science and thereby limits their potential application in the food industry. To develop high‐quality emulsion‐based food products, it is essential to better understand the factors that affect the emulsions’ stability. In real food system, the stability situation of W/O emulsions is more complicated by the fact that various additives are contained in the products, such as NaCl, sugar, and other large molecular additives. The potential stability issues of W/O emulsions caused by these encapsulated additives are a current concern, and special attention should be given to the relevant theoretical knowledge. This article presents several commonly used methods for the preparation of W/O emulsions, and the roles of different additives (water‐ and oil‐soluble types) in stabilizing W/O emulsions are mainly discussed and illustrated to gain new insights into the stability mechanism of emulsion systems. In addition, the review provides a comprehensive and state‐of‐art overview of the potential applications of W/O emulsions in food systems, for example, as fat replacers, controlled‐release platforms of nutrients, and delivery carrier systems of water‐soluble bioactive compounds. The information may be useful for optimizing the formulation of W/O emulsions for utilization in commercial functional food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号