首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The indoor environmental quality in classrooms can largely affect children's daily exposure to indoor chemicals in schools. To date, there has not been a comprehensive study of the concentrations of semivolatile organic compounds (SVOCs) in French schools. Therefore, the French Observatory for Indoor Air Quality (OQAI) performed a field study of SVOCs in 308 nurseries and elementary schools between June 2013 and June 2017. The concentrations of 52 SVOCs, including phthalates, polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), synthetic musks, and pesticides, were measured in air and settled dust (40 SVOCs in both air and dust, 12 in either air or dust). The results showed that phthalates had the highest concentrations among the SVOCs in both the air and dust. Other SVOCs, including tributyl phosphate, fluorene, phenanthrene, gamma-hexachlorocyclohexane (gamma-HCH, lindane), galaxolide, and tonalide, also showed high concentrations in both the air and dust. Theoretical equations were developed to estimate the SVOC partitioning between the air and settled dust from either the octanol/air partition coefficient or the boiling point of the SVOCs. The regression constants of the equations were determined using the data set of the present study for phthalates and PAHs.  相似文献   

2.
Retail stores contain a wide range of products that can emit a variety of indoor pollutants. Among these chemicals, phthalate esters and polybrominated diphenyl ethers (PBDEs) are two important categories of semi‐volatile organic compounds (SVOCs). Filters in heating, ventilation, and air‐conditioning (HVAC) system collect particles from large volumes of air and thus potentially provide spatially and temporally integrated SVOC concentrations. This study measured six phthalate and 14 PBDE compounds in HVAC filter dust in 14 retail stores in Texas and Pennsylvania, United States. Phthalates and PBDEs were widely found in the HVAC filter dust in retail environment, indicating that they are ubiquitous indoor pollutants. The potential co‐occurrence of phthalates and PBDEs was not strong, suggesting that their indoor sources are diverse. The levels of phthalates and PBDEs measured in HVAC filter dust are comparable to concentrations found in previous investigations of settled dust in residential buildings. Significant correlations between indoor air and filter dust concentrations were found for diethyl phthalate, di‐n‐butyl phthalate, and benzyl butyl phthalate. Reasonable agreement between measurements and an equilibrium model to describe SVOC partitioning between dust and gas‐phase is achieved.  相似文献   

3.
A mechanistic model that considers particle dynamics and their effects on surface emissions and sorptions was developed to predict the fate and transport of phthalates in indoor environments. A controlled case study was conducted in a test house to evaluate the model. The model‐predicted evolving concentrations of benzyl butyl phthalate in indoor air and settled dust and on interior surfaces are in good agreement with measurements. Sensitivity analysis was performed to quantify the effects of parameter uncertainties on model predictions. The model was then applied to a typical residential environment to investigate the fate of di‐2‐ethylhexyl phthalate (DEHP) and the factors that affect its transport. The predicted steady‐state DEHP concentrations were 0.14 μg/m3 in indoor air and ranged from 80 to 46 000 μg/g in settled dust on various surfaces, which are generally consistent with the measurements of previous studies in homes in different countries. An increase in the mass concentration of indoor particles may significantly enhance DEHP emission and its concentrations in air and on surfaces, whereas increasing ventilation has only a limited effect in reducing DEHP in indoor air. The influence of cleaning activities on reducing DEHP concentration in indoor air and on interior surfaces was quantified, and the results showed that DEHP exposure can be reduced by frequent and effective cleaning activities and the removal of existing sources, though it may take a relatively long period of time for the levels to drop significantly. Finally, the model was adjusted to identify the relative contributions of gaseous sorption and particulate‐bound deposition to the overall uptake of semi‐volatile organic compounds (SVOCs) by indoor surfaces as functions of time and the octanol‐air partition coefficient (Koa) of the chemical. Overall, the model clarifies the mechanisms that govern the emission of phthalates and the subsequent interactions among air, suspended particles, settled dust, and interior surfaces. This model can be easily extended to incorporate additional indoor source materials/products, sorption surfaces, particle sources, and room spaces. It can also be modified to predict the fate and transport of other SVOCs, such as phthalate‐alternative plasticizers, flame retardants, and biocides, and serves to improve our understanding of human exposure to SVOCs in indoor environments.  相似文献   

4.
The contamination of indoor environments with chemical compounds released by materials and furniture, such as semi‐volatile organic compounds (SVOCs), is less documented in schools than in dwellings—yet children spend 16% of their time in schools, where they can also be exposed. This study is one of the first to describe the contamination of the air and dust of 90 classrooms from 30 nursery and primary schools by 55 SVOCs, including pesticides, phosphoric esters, musks, polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), phthalates, and polybromodiphenylethers (PBDEs). Air samples were collected using an active sampling method, and dust samples were collected via two sampling methods (wiping and vacuum cleaning). In air, the highest concentrations (median >100 ng/m3) were measured for diisobutyl phthalate (DiBP), dibutyl phthalate (DBP), diethyl phthalate (DEP), bis(2‐ethylhexyl) phthalate (DEHP), and galaxolide. In dust, the highest concentrations (median >30 μg/g) were found for DEHP, diisononyl phthalate (DiNP), DiBP, and DBP. An attempt to compare two floor dust sampling methods using a single unit (ng/m²) was carried out. SVOC concentrations were higher in wiped dust, but frequencies of quantification were greater in vacuumed dust.  相似文献   

5.
Consumer products and building materials emit a number of semivolatile organic compounds (SVOCs) in the indoor environment. Because indoor SVOCs accumulate in dust, we explore the use of dust to determine source strength and report here on analysis of dust samples collected in 30 US homes for six phthalates, four personal care product ingredients, and five flame retardants. We then use a fugacity‐based indoor mass balance model to estimate the whole‐house emission rates of SVOCs that would account for the measured dust concentrations. Di‐2‐ethylhexyl phthalate (DEHP) and di‐iso‐nonyl phthalate (DiNP) were the most abundant compounds in these dust samples. On the other hand, the estimated emission rate of diethyl phthalate is the largest among phthalates, although its dust concentration is over two orders of magnitude smaller than DEHP and DiNP. The magnitude of the estimated emission rate that corresponds to the measured dust concentration is found to be inversely correlated with the vapor pressure of the compound, indicating that dust concentrations alone cannot be used to determine which compounds have the greatest emission rates. The combined dust‐assay modeling approach shows promise for estimating indoor emission rates for SVOCs.  相似文献   

6.
Semivolatile organic compounds (SVOCs) emitted from building materials, consumer products, and occupant activities alter the composition of air in residences where people spend most of their time. Exposures to specific SVOCs potentially pose risks to human health. However, little is known about the chemical complexity, total burden, and dynamic behavior of SVOCs in residential environments. Furthermore, little is known about the influence of human occupancy on the emissions and fates of SVOCs in residential air. Here, we present the first‐ever hourly measurements of airborne SVOCs in a residence during normal occupancy. We employ state‐of‐the‐art semivolatile thermal‐desorption aerosol gas chromatography (SV‐TAG). Indoor air is shown consistently to contain much higher levels of SVOCs than outdoors, in terms of both abundance and chemical complexity. Time‐series data are characterized by temperature‐dependent elevated background levels for a broad suite of chemicals, underlining the importance of continuous emissions from static indoor sources. Substantial increases in SVOC concentrations were associated with episodic occupant activities, especially cooking and cleaning. The number of occupants within the residence showed little influence on the total airborne SVOC concentration. Enhanced ventilation was effective in reducing SVOCs in indoor air, but only temporarily; SVOCs recovered to previous levels within hours.  相似文献   

7.
The ongoing health debate about polymer plasticizers based on the esters of phthalic acid, especially di(2-ethylhexyl) phthalate (DEHP), has caused a trend towards using phthalates of lower volatility such as diisononyl phthalate (DINP) and towards other acid esters, such as adipates, terephthalates, citrates, etc. Probably the most important of these so-called “alternative” plasticizers is diisononyl cyclohexane-1,2-dicarboxylate (DINCH). In the indoor environment, the continuously growing market share of this compound since its launch in 2002 is inter alia apparent from the increasing concentration of DINCH in settled house dust. From the epidemiological point of view there is considerable interest in identifying how semi-volatile organic compounds (SVOCs) distribute in the indoor environment, especially in air, airborne particles and sedimented house dust. This, however, requires reliable experimental concentration data for the different media and good measurements or estimates of their physical and chemical properties. This paper reports on air concentrations for DINP, DINCH, diisobutyl phthalate (DIBP), diisobutyl adipate (DIBA), diisobutyl succinate (DIBS) and diisobutyl glutarate (DIBG) from emission studies in the Field and Laboratory Emission Cell (FLEC). For DINP and DINCH it took about 50 days to reach the steady-state value: for four months no decay in the concentration could be observed. Moreover, vapor pressures p0 and octanol-air partitioning coefficients KOA were obtained for 37 phthalate and non-phthalate plasticizers from two different algorithms: EPI Suite and SPARC. It is shown that calculated gas/particle partition coefficients Kp and fractions can widely differ due to the uncertainty in the predicted p0 and KOA values. For most of the investigated compounds reliable experimental vapor pressures are not available. Rough estimates can be obtained from the measured emission rate of the pure compound in a microchamber as is shown for di-n-butyl phthalate (DnBP), di(2-ethylhexyl) adipate(DEHA), tri(octyl) trimellitate (TOTM) and DEHP.  相似文献   

8.
Abstract This paper critically examines indoor exposure to semivolatile organic compounds (SVOCs) via dermal pathways. First, it demonstrates that - in central tendency - an SVOC's abundance on indoor surfaces and in handwipes can be predicted reasonably well from gas-phase concentrations, assuming that thermodynamic equilibrium prevails. Then, equations are developed, based upon idealized mass-transport considerations, to estimate transdermal penetration of an SVOC either from its concentration in skin-surface lipids or its concentration in air. Kinetic constraints limit air-to-skin transport in the case of SVOCs that strongly sorb to skin-surface lipids. Air-to-skin transdermal uptake is estimated to be comparable to or larger than inhalation intake for many SVOCs of current or potential interest indoors, including butylated hydroxytoluene, chlordane, chlorpyrifos, diethyl phthalate, Galaxolide, geranyl acetone, nicotine (in free-base form), PCB28, PCB52, Phantolide, Texanol and Tonalide. Although air-to-skin transdermal uptake is anticipated to be slow for bisphenol A, we find that transdermal permeation may nevertheless be substantial following its transfer to skin via contact with contaminated surfaces. The paper concludes with explorations of the influence of particles and dust on dermal exposure, the role of clothing and bedding as transport vectors, and the potential significance of hair follicles as transport shunts through the epidermis. PRACTICAL IMPLICATIONS: Human exposure to indoor pollutants can occur through dietary and nondietary ingestion, inhalation, and dermal absorption. Many factors influence the relative importance of these pathways, including physical and chemical properties of the pollutants. This paper argues that exposure to indoor semivolatile organic compounds (SVOCs) through the dermal pathway has often been underestimated. Transdermal permeation of SVOCs can be substantially greater than is commonly assumed. Transport of SVOCs from the air to and through the skin is typically not taken into account in exposure assessments. Yet, for certain SVOCs, intake through skin is estimated to be substantially larger than intake through inhalation. Exposure scientists, risk assessors, and public health officials should be mindful of the dermal pathway when estimating exposures to indoor SVOCs. Also, they should recognize that health consequences vary with exposure pathway. For example, an SVOC that enters the blood through the skin does not encounter the same detoxifying enzymes that an ingested SVOC would experience in the stomach, intestines, and liver before it enters the blood.  相似文献   

9.
A mechanistic model was developed to examine how natural ventilation influences residential indoor exposure to semivolatile organic compounds (SVOCs) via inhalation, dermal sorption, and dust ingestion. The effect of ventilation on indoor particle mass concentration and mass transfer at source/sink surfaces, and the enhancing effect of particles on mass transfer at source/sink surfaces are included. When air exchange rate increases from 0.6/h to 1.8/h, the steady‐state SVOC (gas‐phase plus particle phase with log KOA varying from 9 to 13) concentration in the idealized model decreases by about 60%. In contrast, for the same change in ventilation, the simulated indoor formaldehyde (representing volatile organic compounds) gas‐phase concentration decreases by about 70%. The effect of ventilation on exposure via each pathway has a relatively insignificant association with the KOA of the SVOCs: a change of KOA from 109 to 1013 results in a change of only 2–30%. Sensitivity analysis identifies the deposition rate of PM2.5 as a primary factor influencing the relationship between ventilation and exposure for SVOCs with log KOA = 13. The relationship between ventilation rate and air speed near surfaces needs to be further substantiated.  相似文献   

10.
We present a model for the growth of organic films on impermeable indoor surfaces. The model couples transport through a gas‐side boundary layer adjacent to the surface with equilibrium partitioning of semivolatile organic compounds (SVOCs) between the gas phase and the surface film. Model predictions indicate that film growth would primarily be influenced by the gas‐phase concentration of SVOCs with octanol‐air partitioning (Koa) values in the approximate range 10≤log Koa≤13. Within the relevant range, SVOCs with lower values will equilibrate with the surface film more rapidly. Over time, the film becomes relatively enriched in species with higher log Koa values, while the proportion of gas‐phase SVOCs not in equilibrium with the film decreases. Given stable airborne SVOC concentrations, films grow at faster rates initially and then subsequently diminish to an almost steady growth rate. Once an SVOC is equilibrated with the film, its mass per unit film volume remains constant, while its mass per unit area increases in proportion to overall film thickness. The predictions of the conceptual model and its mathematical embodiment are generally consistent with results reported in the peer‐reviewed literature.  相似文献   

11.
Phthalic acid esters and phosphororganic compounds (POC) are generally known as semivolatile organic compounds (SVOCs) and are frequently utilized as plasticizers and flame retardants in commercial products. In the indoor environment, both compound groups are released from a number of sources under normal living conditions and accumulate in air and dust. Therefore, inhalation of air and ingestion of house dust have to be considered as important pathways for the assessment of exposure in living habitats. Especially in the case of very young children, the oral and dermal uptake from house dust might be of relevance for risk assessment. A critical evaluation of indoor exposure to phthalates and POC requires the determination of the target compounds in indoor air and house dust as well as emission studies. The latter are usually carried out under controlled conditions in emission test chambers or cells. Furthermore, chamber testing enables the determination of condensable compounds by fogging sampling. In the case of automobiles, specific scenarios have been developed to study material emissions on a test stand or to evaluate the exposure of users while the vehicle is driving. In this review, results from several studies are summarized and compared for seven phthalic esters and eight POC. The available data for room air and dust differ widely depending on investigated compound and compartment. Room air studies mostly include only a limited number of measurements, which makes a statistical evaluation difficult. The situation is much better for house dust measurements. However, the composition of house dust is very inhomogeneous and the result is strongly dependent on the particle size distribution used for analysis. Results of emission studies are presented for building products, electronic equipment, and automobiles. Daily rates for inhalation and dust ingestion of phthalic esters and POC were calculated from 95-percentiles or maximum values. A comparison of the data with results from human biomonitoring studies reveals that only a small portion of intake takes place via the air and dust paths.  相似文献   

12.
Emission, transport, and fate of semi‐volatile organic compounds (SVOCs), which include plasticizers, flame retardants, pesticides, biocides, and oxidation products of volatile organic compounds, are influenced in part by their tendency to sorb to indoor surfaces. A thin organic film enhances this effect, because it acts as both an SVOC sink and a source, thus potentially prolonging human exposure. Unfortunately, our ability to describe the initial formation and subsequent growth of organic films on indoor surfaces is limited. To overcome this gap, we propose a mass transfer model accounting for adsorption, condensation, and absorption of multiple gas‐phase SVOCs on impervious, vertical indoor surfaces. Further model development and experimental research are needed including more realistic scenarios accounting for surface heterogeneity, non‐ideal organic mixtures, and particle deposition.  相似文献   

13.
Semivolatile organic compounds (SVOCs) are present in many indoor materials. SVOC emissions can be characterized with a critical parameter, y0, the gas‐phase SVOC concentration in equilibrium with the source material. To reduce the required time and improve the accuracy of existing methods for measuring y0, we developed a new method which uses solid‐phase microextraction (SPME) to measure the concentration of an SVOC emitted by source material placed in a sealed chamber. Taking one typical indoor SVOC, di‐(2‐ethylhexyl) phthalate (DEHP), as the example, the experimental time was shortened from several days (even several months) to about 1 day, with relative errors of less than 5%. The measured y0 values agree well with the results obtained by independent methods. The saturated gas‐phase concentration (ysat) of DEHP was also measured. Based on the Clausius–Clapeyron equation, a correlation that reveals the effects of temperature, the mass fraction of DEHP in the source material, and ysat on y0 was established. The proposed method together with the correlation should be useful in estimating and controlling human exposure to indoor DEHP. The applicability of the present approach for other SVOCs and other SVOC source materials requires further study.  相似文献   

14.
Indoor dust samples cannot always be analyzed immediately after collection. However, little information is currently available on how storage conditions may affect measurements. This study was designed to determine how sample storage conditions may affect the concentration of semi‐volatile organic compounds (SVOCs) in the dust. A composite dust was prepared using a Standard Reference Material (SRM 2585) with real indoor dust samples. The composite dust was stored in various types of packaging, at different temperatures (?18°C, 5°C, 20°C, and 35°C), and in different light conditions. The concentration of SVOCs was measured after various storage durations. No effect on SVOC concentrations was observed for the composite dust stored in an amber glass vial at ?18°C for 36 months. At 5°C, 20°C, and 35°C, losses occurred for the more volatile compounds. The experimental storage conditions clearly showed that temperature and duration affected the concentrations of SVOCs in the composite dust. The type of packaging material (polyethylene zip bag or polyethylene garbage bag) did not seem to have a systematic effect on the preservation of SVOCs in the composite dust. Maximum storage duration times are proposed for each compound at various temperatures. For most compounds, samples can be stored for 2 months at 20°C. For samples that cannot be analyzed immediately, we recommend to store them in the dark at ?18°C to ensure a good recovery of all tested compounds.  相似文献   

15.
The envelope of low‐energy buildings is generally constructed with significant amounts of plastics, sealants and insulation materials that are known to contain various chemical additives to improve specific functionalities. A commonly used group of additives are flame retardants to prevent the spread of fire. In this study, decabromodiphenyl ether (BDE‐209) and fourteen emerging brominated flame retardants (BFRs) were analyzed in indoor dust, air and on the window surface of newly built low‐energy preschools to study their occurrence and distribution. BDE‐209 and decabromodiphenyl ethane (DBDPE) were frequently detected in the indoor dust (BDE‐209: <4.1‐1200 ng/g, DBDPE: <2.2‐420 ng/g) and on window surfaces (BDE‐209: <1000‐20 000 pg/m2, DBDPE: <34‐5900 pg/m2) while the other thirteen BFRs were found in low levels (dust: <0.0020‐5.2 ng/g, window surface: 0.0078‐35 pg/m2). In addition, the detection frequencies of BFRs in the indoor air were low in all preschools. Interestingly, the dust levels of BDE‐209 and DBDPE were found to be lower in the environmentally certified low‐energy preschools, which could be attributed to stricter requirements on the chemical content in building materials and products. However, an increase of some BFR levels in dust was observed which could imply continuous emissions or introduction of new sources.  相似文献   

16.
Phthalates are widely used in consumer products. Exposure to phthalates can lead to adverse health effects in humans, with early-life exposure being of particular concern. Phthalate exposure occurs mainly through ingestion, inhalation, and dermal absorption. However, our understanding of the relative importance of different exposure routes is incomplete. This study estimated the intake of five phthalates from the residential indoor environment for 455 Swedish pregnant women in the SELMA study using phthalate mass fraction in indoor dust and compares these to total daily phthalate intakes back-calculated from phthalate metabolite concentrations in the women's urine. Steady-state models were used to estimate indoor air phthalate concentrations from dust measurements. Intakes from residential dust and air made meaningful contributions to total daily intakes of more volatile di-ethyl phthalate (DEP), di-n-butyl phthalate (DnBP), and di-iso-butyl phthalate (DiBP) (11% of total DEP intake and 28% of total DnBP and DiBP intake combined). Dermal absorption from air was the dominant pathway contributing to the indoor environmental exposure. Residential exposure to less volatile phthalates made minor contributions to total intake. These results suggest that reducing the presence of low molecular weight phthalates in the residential indoor environment can meaningfully reduce phthalate intake among pregnant women.  相似文献   

17.
Analysis of the dust from heating, ventilation, and air conditioning (HVAC) filters is a promising long‐term sampling method to characterize airborne particle‐bound contaminants. This filter forensics (FF) approach provides valuable insights about differences between buildings, but does not allow for an estimation of indoor concentrations. In this investigation, FF is extended to quantitative filter forensics (QFF) by using measurements of the volume of air that passes through the filter and the filter efficiency, to assess the integrated average airborne concentrations of total fungal and bacterial DNA, 36 fungal species, endotoxins, phthalates, and organophosphate esters (OPEs) based on dust extracted from HVAC filters. Filters were collected from 59 homes located in central Texas, USA, after 1 month of deployment in each summer and winter. Results showed considerable differences in the concentrations of airborne particle‐bound contaminants in studied homes. The airborne concentrations for most of the analytes are comparable with those reported in the literature. In this sample of homes, the HVAC characterization measurements varied much less between homes than the variation in the filter dust concentration of each analyte, suggesting that even in the absence of HVAC data, FF can provide insight about concentration differences for homes with similar HVAC systems.  相似文献   

18.
Assessing human exposure to semivolatile organic compounds (SVOCs) emitted from materials and products is difficult because methods are not available to easily measure the key emission parameters. A simple method based on a passive sampling technique was thus developed to measure the gas‐phase SVOC concentration (y0) immediately adjacent to the material surface in a consumer product. The method employs standard stainless steel thermal desorption tubes, with values of y0 and an additional unknown parameter, K, the tube surface/air partition coefficient inside the desorption tube, obtained by fitting a diffusion model to the sampling data. Phthalates in two types of polyvinyl chloride flooring were selected to test the method. The values of y0 and K agree well with those measured in independent chamber tests. The y0 measurement method is shown to be applicable to chemicals with a wide range of vapor pressures. This novel method should be useful for assessing potential exposure to SVOCs in consumer products as well as for exposure‐based prioritization of chemicals and their associated products in indoor environments.  相似文献   

19.
Building materials and human activities are important sources of contamination indoors, but little information is available regarding contamination during construction process which could persist during the whole life of buildings. In this study, six construction stages on two construction sites were investigated regarding the emissions of 43 volatile organic compounds (VOCs), 46 semi-volatile organic compounds (SVOCs), and the presence of 4 genera of mold. Results show that the future indoor air quality does not only depend on the emissions of each building product but that it is also closely related to the whole implementation process. Mold spore measurements can reach 1400 CFU/m3, which is particularly high compared with the concentrations usually measured in indoor environments. Relatively low concentrations of VOCs were observed, in relation to the use of low emissive materials. Among SVOCs analyzed, some phthalates, permethrin, and hydrocarbons were found in significant concentrations upon the delivery of building as well as triclosan, suspected to be endocrine disruptor, and yet prohibited in the treatment of materials and construction since 2014. As some regulations exist for VOC emissions, it is necessary to implement them for SVOCs due to their toxicity.  相似文献   

20.
This paper presents measurements on semi-volatile organic compounds (SVOCs) emitted from building materials, household electric appliances, and indoor products. It is extremely difficult to apply the emission test chamber method to the accurate measurement of SVOCs because they are absorbed by the internal walls of the chamber. The authors have reported on the development of the thermal desorption test chamber method that can measure correctly the emission rates of SVOCs emitted from materials under actual room-air temperature conditions. This method is composed of two measurement steps. In the first step we capture organic compounds emitted as gaseous matter. After removing the test piece from the chamber, in the second step we continuously gather the organic compounds absorbed by the chamber's internal walls while heating the chamber. We have used this method to measure emissions from various objects, and have confirmed that most SVOCs are caught in the second step. In this paper, we also report on our verification of the accuracy of SVOC measurements taken using an emission chamber and describe the emission characteristics of SVOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号