首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A borosilicate sol–gel solution is synthesized using a mixture of methyltriethoxysilane, dimethyldiethoxysilane, and boric acid. SiBOC gel fibers are produced from the as‐synthesized sol–gel solution using a spinning apparatus. Subsequently, SiBOC glass fibers are prepared through pyrolysis under argon atmosphere at 1000°C and 1200°C. Mechanical properties of the SiBOC glass fibers are studied by measuring the tensile strength and the elastic modulus. The results show a high tensile strength ?1300 and 1058 MPa, and a high Young modulus ?79 and 95.5 GPa, for the fibers prepared at 1000°C and 1200°C, respectively. Furthermore, alkali resistance of the SiBOC fibers is investigated by measuring the tensile strength after soaking them for 20 h in NaOH and Ca(OH)2 solutions at 100°C. For comparison, the same measurements are performed on commercial AR and E glass fibers. The SiBOC fibers show excellent alkaline resistance and perform better than commercial AR fibers. Indeed, SiBOC fibers retain 80%–90% of the initial strength after Ca(OH)2 attack.  相似文献   

2.
Oxide-bonded porous SiC ceramic filter supports were prepared using SiC powder (d50 = 212 µm), Al2O3, and clay as bond forming additives and graphite as pore former following reaction bonding of powder compacts at 1400°C in air. Reaction bonding characteristics, phase composition, porosity, pore size, mechanical strength, and microstructure of porous SiC ceramic supports were investigated. Mullite bond phase formation kinetics was studied following the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model using non-isothermal differential thermal analysis (DTA) data. Compared to porous SiC ceramic filter supports having no needle-like mullite bond phase, materials processed by the mullite bonding technique exhibited higher average strength (22.1%) and elastic modulus (5.4%) at a similar porosity level of ~38%, with upper and lower bounds of their strength, modulus, and porosity being 39.1 MPa, 40.2 GPa, and 36.3% and 34.2 MPa, 31.3 GPa, and 33.0%, respectively. Spray coating method was applied for preparation of oxidation-bonded SiC filtration layer having thickness of ~150 µm and pore size of ~5–20 µm over the porous SiC support compacts using aqueous slurry made of fine SiC powder (d50 = 15 µm) followed by sintering. The layered ceramics thus prepared are potential materials for gas filter applications.  相似文献   

3.
In this paper, the effect of phase transformation on microstructure evolution and mechanical behaviors of mullite fibers was well investigated from 1100 to 1300°C. In such a narrow temperature range, the microstructure and mechanical properties showed great changes, which were significant to be studied. The temperature of the alumina phase transformation started at below 1100°C. The main phases in fibers were γ-Al2O3 and δ-Al2O3 with amorphous SiO2 at 1150°C. The stable α-Al2O3 formed at 1200°C. Then the mullite phase reaction occurred. As the alumina phase reaction took place, the tensile strength increased with the increasing temperature. In particular, the filaments achieved the highest strength at 1150°C with 1.98 ± 0.17 GPa, and the Young's modulus was 163.08 ± 4.69 GPa, showing excellent mechanical performance. After 1200°C, the mullite phase reaction went on with the crystallization of orthorhombic mullite. The density of surface defects increased rapidly due to thermal grooving, which led to mechanical properties degrade sharply. The strength at 1200°C was 1.01 ± 0.15 GPa with a strength retention of 63.13%, and the Young's modulus was 184.14 ± 10.36 GPa. While at 1300°C, the tensile strength was 0.64 ± 0.14 GPa with a strength retention of only 40.00%.  相似文献   

4.
The mechanical properties of zirconium diboride–silicon carbide (ZrB2–SiC) ceramics were characterized from room temperature up to 1600 °C in air. ZrB2 containing nominally 30 vol% SiC was hot pressed to full density at 1950 °C using B4C as a sintering aid. After hot pressing, the composition was determined to be 68.5 vol% ZrB2, 29.5 vol% SiC, and 2.0 vol% B4C using image analysis. The average ZrB2 grain size was 1.9 μm. The average SiC particles size was 1.2 μm, but the SiC particles formed larger clusters. The room temperature flexural strength was 680 MPa and strength increased to 750 MPa at 800 °C. Strength decreased to ~360 MPa at 1500 °C and 1600 °C. The elastic modulus at room temperature was 510 GPa. Modulus decreased nearly linearly with temperature to 210 GPa at 1500 °C, with a more rapid decrease to 110 GPa at 1600 °C. The fracture toughness was 3.6 MPa·m½ at room temperature, increased to 4.8 MPa·m½ at 800 °C, and then decreased linearly to 3.3 MPa·m½ at 1600 °C. The strength was controlled by the SiC cluster size up to 1000 °C, and oxidation damage above 1200 °C.  相似文献   

5.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

6.
Porous SiC ceramics were synthesized by oxidation bonding of compacts of commercial α‐SiC powder at 1300°C. Different volume fractions of petroleum coke powder were used for variation of porosity of ceramics from 36% to 56%. The material exhibited variations of pore size from 3 to 15 μm, flexural strength from 5.5 to 29.5 MPa, and elastic modulus from 3.3 to 27.6 GPa. Air permeation behavior was studied at 26–650°C. At room temperature Darcian (k1) and non‐Darcian (k2) permeability parameters vary from 1.64 to 18.42 × 10?13 m2 and 0.58 to 2.95 × 10?7 m, respectively. Temperature dependence of permeability was explained from structural changes occurring during test conditions.  相似文献   

7.
《Ceramics International》2021,47(23):33252-33258
The effect of thermal exposure on a mullite fiber was analyzed. This type of mullite fiber, consisting of γ-Al2O3 and amorphous SiO2, was developed for high-temperature applications. Heat treatments at temperatures ranging from 900 °C to 1500 °C for 1h were performed in air. Investigations showed that the tensile strength of the initial fiber was about 1.60 GPa. And the elastic modulus was about 133.51 GPa. The bundles’ strength decreased at 900 °C slightly after thermal treatment, then increased and got a maximum at 1100 °C with 1.65 GPa. At above 1100 °C, the strength degraded sharply due to the mullite phase transformation and the exaggerated grain growth. At 1300 °C, the phase reaction almost finished with a tensile strength of 0.86 GPa. And the strength retention was only 47.50%. When the heat-treated temperature got to 1500 °C, the density of surface defects in the fiber surged, making it too fragile and weak to go through the tensile tests.  相似文献   

8.
Continuous aluminum oxide-mullite-hafnium oxide (AMH) composite ceramic fibers were obtained by melt-spinning and calcination from polymer precursor that synthesized by hydrolysis of the aluminum isopropoxide, dimethoxydimethylsilane and hafnium alkoxide. Due to the fine diameter of 8–9 µm, small grain size of less than 50 nm and the composite crystal texture, the highest tensile strength of AMH ceramic fibers was 2.01 GPa. And the AMH ceramic fibers presented good thermal stability. The tensile strength retention was 75.48% and 71.49% after heat treatment at 1100 °C and 1200 °C for 0.5 h respectively, and was 61.57% after heat treatment at 1100 °C for 5 h. And the grain size of AMH ceramic fibers after heat treatment was much smaller than that of commercial alumina fibers even when the heat treatment temperature was elevated to 1500 °C, benefited by the grain size inhibition of monoclinic-HfO2 (m-HfO2) grains distributed on the boundary of alumina and mullite grains.  相似文献   

9.
3D Cf/SiBCN composites were fabricated by an efficient polymer impregnation and pyrolysis (PIP) method using liquid poly(methylvinyl)borosilazanes as precursor. Mechanical properties and microstructure evolution of the prepared 3D Cf/SiBCN composites at elevated temperatures in the range of 1500‐1700°C were investigated. As temperature increased from room temperature (371 ± 31 MPa, 31 ± 2 GPa) to 1500°C (316 ± 29 MPa, 27 ± 3 GPa), strength and elastic modulus of the composite decreased slightly, which degraded seriously as temperature further increased to 1600°C (92 ± 15 MPa, 12 ± 2 GPa) and 1700°C (84 ± 12 MPa, 11 ± 2GPa). To clarify the conversion of failure mechanisms, interfacial shear strength (IFSS) and microstructure evolution of the 3D Cf/SiBCN composites at different temperatures were investigated in detail. It reveals that the declines of the strength and changes of the IFSS of the composites are strongly related to the defects and SiC nano‐crystals formed in the composites at elevated temperatures.  相似文献   

10.
Boron nitride (BN) fibers were fabricated on a large scale through the melt‐drawn technique from low‐cost boric acid, NH3, and N2. Evolution of structure and properties of BN fibers during the fabrication process was studied by Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), scanning electron microscope (SEM), and X‐ray photoelectron spectroscopy (XPS). The mechanical properties of BN fibers were tested and analyzed. The results shown that both the mechanical properties and the crystallinity of BN fibers slightly increased with the temperature from 450 to 850°C, due to the combination of the fused‐B3N3. For BN fibers heat‐treated at 850 or 1000°C, the tensile strength (σR) and elastic modulus (E) were strongly increased because of the increase in crystallization of the BN phase. The meso‐hexagonal BN fibers with a diameter of 5.0 μm were fabricated at 1750°C, of which the tensile strength (σR) and elastic modulus (E) are 1200 MPa and 85 GPa, respectively. BN fibers with excellent mechanical properties and proper diameters were obtained by nitriding of green fibers during their conversion into ceramic.  相似文献   

11.
《Ceramics International》2023,49(4):5700-5706
In the paper, the aluminosilicate fiber-reinforced zirconia (ASf/ZrO2) ceramic composites were successfully fabricated by polymer impregnation and pyrolysis (PIP) method. The microstructure and high-temperature mechanical properties of the original composites were well studied. The results revealed that the composites could maintain the stability of microstructure at 1000 °C. The flexural strength increased from 58.82 ± 2.83 MPa to 88.74 ± 6.20 MPa and the flexural modulus increased from 29.26 ± 4.67 GPa to 40.76 ± 8.76 GPa. The thermal exposure improved the interfacial bonding and made the load transfer more effective. After heat treatment from 1200 °C to 1400 °C, the flexural strength gradually declined due to the crystallization of the AS fibers and ZrO2 matrix, while the flexural modulus increased in a completely different trend. After heat treatment at 1400 °C, the composites could maintain a flexural strength of 66.95 ± 4.24 MPa with a flexural modulus of 60.42 ± 7.25 GPa. But the fracture mode gradually evolved to brittleness.  相似文献   

12.
Organic-carbon-precursor-added B4C and B4C–SiC ceramics were subjected to pressureless sintering at various temperatures. The carbon precursor increased the densification of the B4C and B4C–SiC ceramics sintered at 2200 °C to 95.6 % and 99.1 % theoretical density (T.D.), respectively. The pyrolytic carbon content of the B4C–SiC composite decreased with increasing SiC content. The graphitization degree of pyrolytic carbon decreased slightly with the amount of carbon precursor and content of SiC. The 95 wt. % B4C–5 wt. % SiC composite added with 7.5 wt. % carbon precursor and sintered at 2200 °C outperformed the other B4C–SiC composites, and its sintered density, flexural strength, Young’s modulus, and microhardness were 98.6 % T.D., 879 MPa, 415 GPa, and 28.5 GPa, respectively. These values were higher than those of composites prepared via pressureless sintering and comparable to those of composites fabricated via hot pressing and/or using metal or oxide additives.  相似文献   

13.
The mechanical properties of dense, hot‐pressed ZrB2–30 vol% SiC ceramics were characterized from room temperature up to 1600°C in air. Specimens were tested as hot‐pressed or after hot‐pressing followed by heat treatment at 1400°C, 1500°C, 1600°C, or 1800°C for 10 h. Annealing at 1400°C resulted in the largest increases in flexure strengths at the highest test temperatures, with strengths of 470 MPa at 1400°C, 385 MPa at 1500°C, and 425 MPa at 1600°C, corresponding to increases of 7%, 8%, and 12% compared to as hot‐pressed ZrB2–SiC tested at the same temperatures. Thermal treatment at 1500°C resulted in the largest increase in elastic modulus, with values of 270 GPa at 1400°C, 240 GPa at 1500°C, and 120 GPa at 1600°C, which were increases of 6%, 12%, and 18% compared to as hot‐pressed ZrB2–SiC. Neither ZrB2 grain size nor SiC cluster size changed for these heat‐treatment temperatures. Microstructural analysis suggested additional phases may have formed during heat treatment and/or dislocation density may have changed. This study demonstrated that thermal annealing may be a useful method for improving the elevated temperature mechanical properties of ZrB2‐based ceramics.  相似文献   

14.
Composites consisting of 70 vol% ZrB2 and 30 vol% α‐SiC particles were hot pressed to near full density and subsequently annealed at temperatures ranging from 1000°C to 2000°C. Strength, elastic modulus, and hardness were measured for as‐processed and annealed composites. Raman spectroscopy was employed to measure the thermal residual stresses within the silicon carbide (SiC) phase of the composites. Elastic modulus and hardness were unaffected by annealing conditions. Strength was not affected by annealing at 1400°C or above; however, strength increased for samples annealed below 1400°C. Annealing under uniaxial pressure was found to be more effective than annealing without applied pressure. The average strength of materials annealed at 1400°C or above was ~700 MPa, whereas that of materials annealed at 1000°C, under a 100 MPa applied pressure, averaged ~910 MPa. Raman stress measurements revealed that the distribution of stresses in the composites was altered for samples annealed below 1400°C resulting in increased strength.  相似文献   

15.
The mechanical properties of alumina AF17-20 fiber after high-temperature treatment have been evaluated through tensile tests on single fiber and bundle. The tensile test on single fibers shows that the temperature has little effect on the elastic modulus of the fibers, which stables around 140 GPa. The test on bundles minimizes the personal errors thus giving a more reliable value of tensile strength. In general, as temperature increases, both the Weibull modulus and the tensile strength decrease gradually. De-sized fibers have the highest tensile strength, but inherent defects like pores still cause slight dispersion of the strength. Further, the strength maintains about 90% after treating below 1200 °C, and this insignificant decline is caused by the decrease of amorphous SiO2 and the formation of aluminum silicate. In addition, the severe degradation in strength over 1200 °C is mainly attributed to the appearance and growth of mullite grains, which is only about 60% of the initial value.  相似文献   

16.
《Ceramics International》2022,48(14):20285-20293
The impact of adding 20 vol% SiC on the properties of TiB2 was studied in this research. The spark plasma sintering (SPS) process was used as the preparation technique at 1850 °C, the resulted composite was characterized using X-ray diffraction (XRD), field emission electron probe micro analyzer, transmission electron microscopy (TEM), field emission scanning electron microscopy, energy dispersive X-ray analysis, and nanoindentation. The prepared composite presented a relative density of ~98.5%. XRD and TEM results confirmed the in-situ formation of graphite; no in-situ TiC could be detected in the final microstructure of the composite. Forming a low melting point compound between SiO2 and B2O3 oxides lead to the creation of wet interfaces between the ingredients. In terms of mechanical properties, the composite possessed Vickers hardness of 21.6 ± 2.2 GPa, flexural strength of 616 ± 28 MPa, fracture toughness of 5.3 ± 1.2 MPa m1/2, and elastic modulus of 498 ± 12 GPa. According to the microstructural images, crack deflection, crack branching, crack arresting, crack bridging, and grain breaking events were found to be the main toughening mechanisms in this ceramic. In addition, the nanoindentation investigation indicated the role of SiC addition in improving the elastic modulus, hardness, and wear resistance of the prepared composite.  相似文献   

17.
《Ceramics International》2020,46(11):18994-18999
The infiltration of boron carbide preforms with Al alloys at relatively low temperature prevents the formation of the undesired Al4C3 phase. In the present study the effect of boron carbide powder particle size on the mechanical properties and phase composition of composites infiltrated with Al-20%Si alloys at 950 °C was investigated. According to XRD analysis, the infiltrated composites contain Al8C7B4, AlB2 and AlB12, as well as non-reacted Al and Si that originated from solidification of Al-Si alloy. The presence of small amounts of SiC was noted in specimens fabricated from fine boron carbide powder. No evidence for the formation of non-desired aluminum carbide phase was obtained. Infiltration of ceramic preforms with virtually the same green density generated composites with an elastic modulus and bending strength that continuously decreased from 270 GPa and 405 MPa to 195 GPa and 345 MPa for powder with 90% particles close to 3 μm and powder with 90% particles close to 180 μm, respectively. These results ambiguously confirm that boron carbide particle size strongly affects mechanical properties of reaction-bonded composites infiltrated with Al-Si alloy at 950 °C and reflect the amount of newly formed ceramic phases appearing during infiltration and the presence of defects at the metal-ceramic interface.  相似文献   

18.
Micropatterned SiC ceramics were fabricated from polycarbosilanes applying a softlithographic replication technique. A polydimethylsiloxane mould replicated from a photolithographic microstructured silicon wafer was used as master structure. The polydimethylsiloxane mould was coated with a solution containing a mixture of two different polycarbosilanes in n-octane. After treatment at 200–400 °C the cross-linked polycarbosilane films were debonded and pyrolysed at 900 °C in nitrogen and subsequently crystallised at temperatures up to 1500 °C in argon. The cross-linking and thermal degradation behaviour of the polycarbosilanes was investigated by Fourier-transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. X-ray diffractrometry showed the expected development of a nanocrystalline β-SiC (3 nm) as the main phase with increasing temperature. However, traces of α-SiO2 derived from the polycarbosilane precursors were also detected by X-ray analysis. Removal of the α-SiO2 dioxide with hydrofluoric acid in the pyrolysed samples and subsequent increased the crystallite size to 7 nm. The Young's modulus determined by nanoindentation was increased from 3 GPa after cross-linking to 110 GPa after crystallisation. Scanning electron microscopy revealed, that the initial micropatterns were fully retained in the pyrolysed and crystallised SiC ceramics. The micropatterned cross-linked and crystallised β-SiC based substrates exhibited light scattering characteristics, which qualify them as promising candidates for diffractive optical elements in microoptical applications.  相似文献   

19.
Dense HfB2-TiB2-SiC-MoSi2 quadruplet composite was produced by a reactive pressureless sintering method at 2050 °C for 5 h. The relative density was improved and reached 98% by in situ formation of SiC and MoSi2 phases. Microstructural studies proved that SiC and MoSi2 second phases were mostly formed during the sintering process. Moreover, the Sintering mechanism of the composite was investigated by HSC software. TiB2 co-matrix was improved the sinterability of the composite by the formation of (Hf,Ti,Mo)–B and (Hf,Ti,Mo)–C solid solutions.Mechanical properties such as Vickers hardness (23.2 GPa), fracture toughness (5.4 MPa m1/2), and elastic modulus (430 GPa) were effectively enhanced by tailoring the composite.  相似文献   

20.
A reactive infiltration processing of SiC/Fe–Si composites using preforms made of coked rice husks (RHs) and SiC powder in different ratios is reported, in which FeSi2 alloy was used as infiltrant. The preforms were heat-treated at 1550 °C for 6 h prior to the infiltration. The coked RHs, which are composed of SiO2 and C, were converted to SiC and poorly crystallized C by carbothermal reduction during the heat treatment. The study of the microstructure and mechanical properties of the composites shows that molten Fe–Si alloy had good wetting of the heat-treated preforms and adequate infiltration properties. Free carbon in the preform reacted with Si in the molten FeSi2 during infiltration forming new SiC, the composition of the intermetallic liquid being moved towards that of FeSi. As a result, the infiltrated composites are composed of SiC, FeSi2 and FeSi phases. Vickers hardness, elastic modulus, three-point flexural strength and indentation fracture toughness of the composites are found to increase with SiC additions up to 30% w/w in the preforms, reaching the values of 18.2 GPa, 290 GPa, 213 MPa and 4.9 MPa m1/2, respectively. With the SiC addition further raised to 45% w/w, the elastic modulus, flexural strength and fracture toughness of the composite turned down probably due to high residual stress and hence the more intense induction of microcracks in the composite. De-bonding of SiC particles pulled out of the Fe–Si matrix, transgranular fracture of part of the SiC particles and in the Fe–Si matrix, and crack bridging all exist in the fracture process of the composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号