首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(7):10615-10624
Red phosphor plays a key role in improving the lighting and display quality of phosphor-converted white light-emitting diodes (pc-WLEDs). Meanwhile, developing new luminescent matrix materials can positively contribute to the acquisition of ideal and efficient phosphors. In this work, we propose a novel red-emitting Na5W3O9F5:Eu3+ (NWOF:Eu3+) phosphor. The phase composition, morphology, electronic structure and photoluminescence properties of the NWOF:Eu3+ phosphor were systematically investigated. The EXAFS results prove that the Eu3+ dopants occupy the Na2 and Na3 sites in the NWOF host. Under 466 nm blue light excitation, NWOF:xEu3+ (0.05 ≤ x ≤ 0.25) phosphors display a dominant red emission at 607 nm and achieves a high color purity (97.44%) due to the dominant electric dipole transition (5D07F2) of Eu3+ ions. Impressively, this red-emitting NWOF:0.25Eu3+ phosphor exhibits relatively superior thermal stability (450 K, >50%) and excellent chromaticity stability (2.32 × 10?4 ≤ ΔE ≤ 6.23 × 10?3) from 298 K to 498 K. The activation energy for thermal quenching effect is determined to be 0.22 eV. Moreover, the pc-WLED was fabricated by coupling a 460 nm blue chip with the as-synthesized NWOF:0.25Eu3+ red phosphor and commercial YAG:Ce3+ phosphor. The optical parameters of the as-fabricated pc-WLED are also measured, and the CIE coordinates remain almost constant as the drive current increases from 20 mA to 120 mA. These results indicate that the NWOF:0.25Eu3+ red phosphors should be a suitable candidate as a red component for the preparation of pc-WLEDs.  相似文献   

2.
LiCaAlN2:Eu3+/Tb3+ red/green phosphors were successfully prepared by conventional solid‐state reaction. The photoluminescence (PL) properties and cathodoluminescence (CL) properties of LiCaAlN2:Eu3+/Tb3+ were investigated in detail. The Eu3+ (Tb3+) doped LiCaAlN2 shows red (green) emission peaking at 615 nm (550 nm). Monitored at 615 nm (550 nm), it is interesting to found that LiCaAlN2:Eu3+ (LiCaAlN2:Tb3+) has a broad charge transfer transition in the range of 350‐450 nm (275‐375 nm) peaking at 380 nm (343 nm), which can be efficiently excited by n‐UV light‐emitting diodes (LEDs). Under electron beam excitation, LiCaAlN2:Tb3+ exhibited a good resistance to the current saturation. The white LED has also been fabricated with blue, green, and LiCaAlN2:Eu3+ red phosphor. The results indicate that LiCaAlN2:Eu3+/Tb3+ could be conducive to the development of phosphor‐converted LEDs and field emission displays (FEDs).  相似文献   

3.
Pyroxene-type phosphors were widely developed due to the advantages of high chemical stability, luminous efficiency, and low production cost. In this contribution, a series of Eu2+/Tb3+ co-doped Ca0.75Sr0.2Mg1.05Si2O6 (CSMS) phosphors with pyroxene structure were successfully synthesized by the solid-state method. Under the 340 nm excitation, the emission peaks of the phosphor show a redshift with the increase of Eu2+ concentration. The emitting color of Eu2+/Tb3+ co-doped samples shows a redshift attributed to the energy transfer from Eu2+ to Tb3+. Simultaneously, acquired thermometer exposes superbly temperature-sensitive properties (Sa and Sr having maximum values 4.7% K−1 and 0.6% K−1, respectively) over the cryogenic temperature range (77–280 K). Furthermore, it has good stability and precision at cryogenic temperatures, indicating that CSMS:0.03Eu2+/0.03Tb3+ phosphor is a very promising fluorescent material suitable for cryogenic temperature sensing.  相似文献   

4.
In this work, using Ca10.5(PO4)7 as the structural model, a number of Eu3+-doped [Ca9Na3xY1-x(PO4)7 (CNYP-I, 0 ≤ x ≤ 1/2) ← Ca10.5(PO4)7 → Ca9+yNa3/2-y/2Y(1-y)/2(PO4)7 (CNYP-II, 0 ≤ y ≤ 1)] phosphors were designed and synthesized through the heterovalent substitution of Y3+ and Na+ to Ca2+. The substitution mechanism, composition structure, luminescence performance, and thermal stability of Eu3+-doped CNYP-I (0 ≤ x ≤ 1/2) as well as the solid solutions of CNYP-II (0 ≤ y ≤ 1), were discussed in detail. The morphology and element composition of CNYP-I (0 ≤ x ≤ 1/2) and CNYP-II (0 ≤ y ≤ 1) solid solutions were analyzed by SEM and EDS. The PL spectra of the specimens were containing the predominant red peak of emission at 612 nm caused via the transition of 5D0-7F2, indicating that Eu3+ occupies the low-symmetry center. Moreover, the site symmetry Eu3+ occupied changed with the x/y value. The luminous intensity of Eu3+-doped CNYP-I (0 ≤ x ≤ 1/2) and CNYP-II (0 ≤ y ≤ 1) phosphors at 150°C maintained about 60% of room temperature. The representative compound CNYP-I (x = 1/3) was used as the red phosphor to prepare a near-UV based white LEDs along with Ra of 80.9 and CCT of 4100 K.  相似文献   

5.
The trivalent rare-earth (RE3+) doped phosphors show tremendous achievement in narrow band multicolor line emission for various applications. However, the 4f–4f absorption transition of these ions is forbidden in UV and blue light excitation. Usually, a sensitizer having spin allowed transition was used as a co-dopant to excite these ions via the energy transfer phenomenon. Another approach promisingly using to excite these ions by efficient energy transfer from the intrinsic emission of the Ca2LuTaO6 double perovskite phosphors host lattice. Phosphors of Ca2LuTaO6 with double perovskite structure were synthesized by using a high-temperature solid-state reaction method. The produced Ca2LuTaO6 double perovskite phosphors show an intrinsic broad band emission centered at 424 nm under the excitation of 313 nm UV light. The origin of this broad band blue emission was deeply investigated by using computation and experimental approaches. The trivalent activator Dy3+ and Eu3+ were doped is a single and co-dopant in the produced Ca2LuTaO6 phosphors to check their excitation in UV and near-UV spectral region. X-ray diffraction and scanning electron microscopy were used to investigate the structure and phase analysis. Various characterizations such as photoluminescence excitation, emission, and CIE chromaticity coordinates were measured which illustrate the potential of Dy3+ and Eu3+ activated Ca2LuTaO6 double perovskite phosphors for narrow band multicolor line emission for various applications.  相似文献   

6.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

7.
Phosphors-converted LEDs (pc-LEDs) are excellent artificial light sources for indoor plant cultivation, in which the far-red-emitting component (700−780 nm) plays an important role in regulating the photomorphogenesis of plants. Accordingly, highly efficient and thermally stable far-red-emitting phosphors are indispensable for developing high-performance plant cultivation pc-LEDs. Herein, far-red-emitting YAl3(BO3)4:Cr3+ (YAB:Cr3+) phosphors were synthesized by solid-state reaction, and their photoluminescence characteristics, thermal quenching, quantum yield (QY), and application in pc-LEDs were systematically investigated. The YAB:Cr3+ phosphor has an intense broadband absorption to the blue light, simultaneously exhibiting the sharp-line 2E emission and the broadband T2 emission of Cr3+ with a QY of ~86.7%. The far-red broadband emissions of YAB:Cr3+ centered at ~735 nm show a high resemblance to the active-state (PFR) absorption of plant phytochrome. Moreover, the YAB:Cr3+ phosphor shows the thermally enhanced luminescence at temperatures of 303−393 K and the near-zero thermal quenching up to 423 K. The anomalous thermal enhancement is attributed to the temperature-dependent repopulation between 2E and T2 states. Finally, a pc-LED device was fabricated with the YAB:Cr3+ phosphor and blue chip, exhibiting the light out power of ~50.6 mW and energy conversion efficiency of ~17.4% at 100 mA drive current, respectively. The exceptional PL features including suitable excitation/emission wavelengths, suppressed thermal quenching and high QY make YAB:Cr3+ phosphors very promising for applications in plant growth pc-LEDs.  相似文献   

8.
A single‐phase full‐color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ has been synthesized by high‐temperature solid‐state method. The crystal structure is measured by X‐ray diffraction. The emission can be tuned from blue to green/red/white through reasonable adjustment of doping ratio among Eu2+/Tb3+/Mn2+ ions. The photoluminescence, energy‐transfer efficiency and concentration quenching mechanisms in Eu2+‐Tb3+/Eu2+‐Mn2+ co‐doped samples were studied in detail. All as‐obtained samples show high quantum yield and robust resistance to thermal quenching at evaluated temperature from 30 to 200°C. Notably, the wide‐gamut emission covering the full visible range of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ gives an outstanding thermal quenching behavior near‐zero thermal quenching at 150°C/less than 20% emission intensity loss at 200°C, and high quantum yield‐66.0% at 150°C/56.9% at 200°C. Moreover, the chromaticity coordinates of Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ keep stable through the whole evaluated temperature range. Finally, near‐UV w‐LED devices were fabricated, the white LED device (CCT = 4740.4 K, Ra = 80.9) indicates that Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ may be a promising candidate for phosphor‐converted near‐UV w‐LEDs.  相似文献   

9.
《Ceramics International》2022,48(11):15165-15179
For the first time, novel eulytite-like Eu2+/Eu3+: Na3Bi5(PO4)6 phosphor was synthesized via high temperature solid-state reaction method in reduction environment, and the structure, luminescence performances and thermal stability were investigated and discussed using various techniques. X-ray refinement diffraction and Raman spectra revealed the around 200 nm well-crystallized eulytite-type (I43d space group) phosphors were synthesized, and a diagram of crystal structure of Na3Bi5(PO4)6 was proposed. X-ray photoelectron spectroscopy analysis confirmed the co-existence of Eu2+ and Eu3+ ions which exhibited characteristic 4f65d→8S7/2 transition of Eu2+ and 7F05D0,1,2,3,4 transitions of Eu3+ ions. On the other hand, due to the activation of Eu2+, samples displayed good tunability on excited and emission behaviors under different excited laser. The JO parameters, emission cross-section, branching ratio and asymmetric ratio indicated that the Eu doping increased the covalency and asymmetry of host. Thermal quenching was studied and the reasons were discussed. Through the comparison of phosphors prepared in different conditions, the thermal stability& repeatability, radiative lifetime, color purity and activation energy were remarkably superior due to the Eu doping and in particularly Eu2+ activation. Finally, the energy level and CIE chromaticity diagrams were plotted to explain the mechanism of Eu2+ activation and energy transfer between Eu2+ and Eu3+ ions. The 0.5%Eu doped Na3Bi5(PO4)6 exhibited promising tunable red-emission performance with quantum efficiency of 92%, activation energy of 0.24 eV, red color purity of 93.74% and very low non-radiative transfer ratio 44.20 s?1 with smaller CCT (<2200 K).  相似文献   

10.
Tb3+‐doped and Eu2+, Tb3+ co‐doped Ca9Y(PO4)7 phosphors were synthesized by conventional solid‐state method. Additionally, the luminescence properties, decay behavior and energy transfer mechanism have already been investigated in detail. The green emission intensity of Tb3+ ions under NUV excitation is weak due to its spin‐forbidden f‐f transition. While Eu2+ can efficiently absorb NUV light and yield broad blue emission, most of which can be absorbed by Tb3+ ions. Thus, the emission color can be easily tuned from cyan to green through the energy transfer of Eu2+→Tb3+ in Ca9Y(PO4)7:Eu2+,Tb3+ phosphor. In this work, the phenomenon of cross‐relaxation between 5D3 and 5D4 are also mentioned. The energy transfer is confirmed to be resulted from a quadrupole‐quadrupole mechanism.  相似文献   

11.
A novel apatite-type SrMgY3(SiO4)3F was synthesized by a high-temperature solid-state reaction. The crystal structure was refined using powder X-ray diffraction data. SrMgY3(SiO4)3F crystallizes in P63/m hexagonal space group with lattice parameters of a = b = 9.45270 Å, c = 6.77617 Å, and V = 524.357 Å3. The incorporation of the Ce3+ and Tb3+ ions into the matrix can generate bright blue and green lights under ultraviolet (UV) light excitation. The codoped Ce3+ and Tb3+ in SrMgY3(SiO4)3F can effectively improve green emission intensity and thermal stability through the energy transfer from the Ce3+ to Tb3+ ions. With the increase of Tb3+-doping content, the luminescent color of phosphor changes from blue to cyan and finally to green. SrMgY3(SiO4)3F:0.06Ce3+,0.90Tb3+ phosphor exhibited intense green light emission with a quantum yield of 59.49% and good thermal stability, with an emission intensity at 150°C was 96% of that at 30°C. Finally, the prepared sample was coated on 365 nm UV chips to fabricate white light-emitting diodes with a color rendering index of 82.6 and a correlated color temperature of 2912 K, demonstrating its potential for applications in display and lighting.  相似文献   

12.
Herein, a series of novel Na2GdMg2(VO4)3:Eu3+ (NGMVO:Eu3+) red phosphors were elaborated by conventional solid-state reaction process. Their structural features, luminescent properties, energy transfer were researched at length. XRD patterns indicate that NGMVO:Eu3+ crystallized in single cubic garnet structure. Under the excitation of near ultraviolet light at 356 nm, the emission spectra of NGMVO host could be divided in two parts that resulted from 3T21A1 and 3T11A1 transitions of VO43?. While NGMVO:Eu3+ phosphors show intense sharp red emission peaks including 590, 610, 652 and 706 nm that originated from 5D07FJ (J = 1–4) transitions of Eu3+, respectively. The optimal concentration of Eu3+ is 0.7. Importantly, NGMVO:0.7Eu3+ sample presents high energy transfer efficiency (89 %) and high external quantum efficiency (48.3 %). Besides, its emission intensity remains 79 % at 420 K compared with that at 300 K, proving the good thermal stability of phosphors. All above results suggest that NGMVO:Eu3+ red phosphors have latent applications in white light emitting diodes.  相似文献   

13.
《Ceramics International》2019,45(11):14249-14255
Novel single-component phosphors Ca3Sc2Si3O12:Cr3+/Ln3+ (CSS:Cr3+/Ln3+, Ln = Nd, Yb, Ce) with broadband near-infrared (NIR) emissions are synthesized. Their phase structure, photoluminescence properties and energy transfer between Cr3+ and Ln3+ ions are investigated. In the CSS host, Cr3+ ions occupy Sc3+ sites with low-field octahedral coordination, and thus show a broadband emission in 700–900 nm under the blue light excitation. Nd3+, Yb3+ and Ce3+ ions substitute Ca2+ sites in CSS, where Nd3+ and Yb3+ ions emit the NIR light in 900–1100 nm and their excitation efficiencies at ∼450 nm are greatly enhanced by utilizing the energy transfer from Cr3+ to Nd3+/Yb3+ ions. Ce3+ ions can further enhance the absorption of CSS:Cr3+/Ln3+ phosphors to the blue light, and at the same time contribute to the visible emission in 480–650 nm. Furthermore, CSS:Cr3+/Ln3+ phosphors show good thermal stability, and approximately 79% of the initial emission intensity is sustained at 150 °C. A phosphor-converted LED (pc-LED) prototype is fabricated by integrating the as-prepared phosphor CSS:Cr3+/Ln3+ and the commercial phosphor CaAlSiN3:Eu2+ with the blue LED chip, showing a super broadband emission ranging from 450 to 1100 nm. This finding shows the potential application of CSS:Cr3+/Ln3+ phosphors in broadband NIR pc-LEDs or super broadband LED sources with visible to NIR light output.  相似文献   

14.
In this work, a new red phosphor with high color purity, Eu3+ ions doped Ba(Mg1/3Nb2/3)O3 phosphor has been prepared by wet chemical method. The structure analysis suggests BMN:x%Eu phosphors have a hexagonal phase and Ba2+ ions are replaced by Eu3+ ions in BMN. Upon excitation of NUV light, the BMN:x%Eu phosphors emit strong red light around 615?nm, derived from the 5D0-7F2 transition of Eu3+ ions. The relationship between luminescent properties and structure of BMN:x%Eu was discussed. The Judd-Ofelt intensity parameters (Ω2, Ω4) were calculated to analyze the asymmetry of the Eu3+ ions site occupancy further, and the quantum efficiency of BMN:3%Eu was found to be 77.26%. In addition, the decay curve indicates the decay time(τ) of BMN:3%Eu is determined to be 1.34?ms and Eu3+ ions occupy only one type of site. The CIE chromaticity coordinate (0.656,0.344) of BMN:3%Eu is quite close to the red phosphors standard value (0.670, 0.330), which indicates BMN:x%Eu can be a suitable red phosphor used in NUV-based white LEDs.  相似文献   

15.
A novel apatite-based UV-excited dual-emitting Ca2Na2La6(SiO4)4(PO4)2O: Eu2+/Eu3+ phosphor (CNL: Eu2+/Eu3+) was designed and successfully synthesized by a solid-state reaction. Compared with previous reports on this family of materials, a structural study based on DFT calculation exhibited a new consequence that the monovalent ions in this system are more inclined to occupy the seven-coordinate cationic sites rather than the nine-coordinate sites. This result was confirmed by the structural refinement and high-resolution transmission electron microscopy (HRTEM) data. Due to the coexistence of Eu2+ and Eu3+ dopants in the material, under 345 or 392 nm excitation, CNL: 0.02Eu2+/Eu3+ exhibited a green Eu2+ emission band (528 nm) and red Eu3+ emission peaks (around 618 nm). The application potential of CNL:0.02Eu2+/Eu3+ in luminescent thermometry was studied by exploiting the temperature sensitivity of the fluorescent intensity ratio (green/red) at different temperatures. It was found that, under 345 nm excitation, the fluorescent intensity ratio of CNL: 0.02Eu2+/Eu3+ displayed linear correlation over the temperature range of 298 to 473 K with a high sensitivity of 2.82%K−1. Additionally, the emission color of the CNL: 0.02Eu2+/Eu3+ sample under UV lamp (254 and 365 nm) excitation showed an obvious change (from green to red) as the temperature increased from 298 to 473 K (from green to red). These results indicated that CNL: Eu2+/Eu3+ can serve as an excellent visual luminescent ratiometric thermometer. Furthermore, this work provides a novel reference for developing high-performance luminescence temperature-sensing materials.  相似文献   

16.
《Ceramics International》2020,46(8):12138-12144
A new mechanoluminescent phosphor was developed from a sodium (Na) superionic conductor (NASICON)-structured Na3Sc2(PO4)3:Eu2+ phosphor that is known for its self-healing properties. The compound that crystalized assuming monoclinic C2/c symmetry was found to be blue-emitting, with no noticeable persistent luminescence. Thermoluminescence analysis showed that the phosphor had two prominent distinct thermal emission bands corresponding to the high-temperature β- and γ-phases of the composition. The mechanoluminescence properties of the material that does not have any persistent luminescence at room temperature were investigated by imparting impulsive strain. The compound on charging with 365 nm radiation was found to have significant mechanoluminescent emission originating from shallow defects present in the β-phase of composition that formed by the stress-induced phase transition process. Its emission characteristics and temporal behavior were investigated by varying the impact velocity.  相似文献   

17.
A series of Ca5(PO4)3F:Dy3+, Eu3+ phosphors was synthesized by a solid‐state reaction method. The XRD results show that all as‐prepared Ca5(PO4)3F:Dy3+, Eu3+ samples match well with the standard Ca5(PO4)3F structure and the doped Dy3+ and Eu3+ ions have no effect on the crystal structure. Under near‐ultraviolet excitation, Dy3+ doped Ca5(PO4)3F phosphor shows blue (486 nm) and yellow (579 nm) emissions, which correspond to 4F9/26H15/2 and 4F9/26H13/2 transitions respectively. Eu3+ co‐doped Ca5(PO4)3F:Dy3+ phosphor shows the additional red emission of Eu3+ at 631 nm, and an improved color rendering index. The chromaticity coordinates of Ca5(PO4)3F:Dy3+, Eu3+ phosphors also indicate the excellent warm white emission characteristics and low correlated color temperature. Overall, these results suggest that the Ca5(PO4)3F:Dy3+, Eu3+ phosphors have potential applications in warm white light‐emitting diodes as single‐component phosphor.  相似文献   

18.
Dy3+, Eu3+: NaLa(WO4)2 phosphors are successfully synthesized through the solid-state reaction technique. The phase-structure and morphology are measured via X-ray diffraction and energy dispersive spectrometry. The concentrations of Dy3+, Eu3+, La3+, and W6+ are measured via ICP. The absorption and excited spectra are presented, which indicate that a blue band ranging from 430 to 480 nm is suitable for excitation. Using a commercial blue LED with a wavelength of 450 nm as the excitation light source, emission spectra for samples with varying dopant concentration ratios of Dy3+ to Eu3+ are obtained, which show good tunable yellow and red emission. For the purpose of investigating white LED performance, CIE spectra and a white light photo are also presented. The results reveal that varying the dopant concentration ratio of Dy3+ to Eu3+ plays a key role in the warm-white performance. With increasing concentration of Eu3+, the correlated color temperature decreases from 4069 to 3172 K, which indicates good warm-white performance.  相似文献   

19.
NASICON-type Na3V2(PO4)3 is a promising electrode material for developing advanced sodium-ion batteries. Preparing Na3V2(PO4)3 with good performance by a cost-effective and large-scale method is significant for industrial applications. In this work, a porous Na3V2(PO4)3/C cathode material with excellent electrochemical performance is successfully prepared by an agar-gel combined with freeze-drying method. The Na3V2(PO4)3/C cathode displayed specific capacities of 113.4 mAh·g-1, 107.0 mAh·g-1 and 87.1 mAh·g-1 at 0.1 C, 1 C and 10 C, respectively. For the first time, the 500-mAh soft-packed symmetrical sodium-ion batteries based on Na3V2(PO4)3/C electrodes are successfully fabricated. The 500-mAh symmetrical batteries exhibit outstanding low temperature performance with a capacity retention of 83% at 0 ℃ owing to the rapid sodium ion migration ability and structural stability of Na3V2(PO4)3/C. Moreover, the thermal runaway features are revealed by accelerating rate calorimetry (ARC) test for the first time. Thermal stability and safety of the symmetrical batteries are demonstrated to be better than lithium-ion batteries and some reported sodium-ion batteries. Our work makes it clear that the soft-packed symmetrical sodium ion batteries based on Na3V2(PO4)3/C have a prospect of practical application in high safety requirement fields.  相似文献   

20.
Ca9La(PO4)5(SiO4)F2:Tb3+,Dy3+ (CLPSF:Tb3+,Dy3+) phosphors were successfully prepared using the traditional solid-state technique. The crystal structure was refined and the luminescence properties have been examined in detail. The band gap and electronic structure of Ca9La(PO4)5(SiO4)F2 were performed by the periodic density functional theory (DFT) calculation. The spectral and fluorescence decay dynamics of CLPSF:Tb3+,Dy3+ show that the energy transfer behavior between Tb3+ and Dy3+ ions is observed. The CLPSF:Tb3+,Dy3+ phosphors can be efficiently excitable at the wavelengths range from 300 to 500 nm. The emission spectrum covers the whole visible part of the spectra with the sharp emission bands in red, green, and blue regions. The correlated color temperature (CCT) and color rendering index (CRI) of white light emission could be improved by the fine-tuning of the Tb3+ and Dy3+ ions ration in accordance with the energy transfer behavior. Thus, the CLPSF:Tb3+,Dy3+ phosphor could be used as a material for the near-ultraviolet (n-UV) and white light-emitting diodes (w-LEDs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号