共查询到20条相似文献,搜索用时 125 毫秒
1.
Vladimír Prajzler Karel Maca Přemysl Šťastný Richard I. Todd 《Journal of the American Ceramic Society》2022,105(9):5562-5568
The origin of nonuniform microstructure and abnormal grain growth (AGG) was investigated in flash sintered 3 mol% yttria-stabilized zirconia (3YSZ) ceramics. The microstructural homogeneity decreased with increasing direct current (DC) density and with dwell time in a flash state, eventually resulting in AGG in the specimen core, the first observation of AGG in 3YSZ. Abnormal grains up to 100 μm in size emerged when the DC density was ≥160 mA/mm2, and the specimen's density exceeded 99% of theoretical, starting from the cathode and propagating toward the anode. The results are discussed by comparison with established mechanisms and previous experimental evidence concerning AGG in oxides, focusing on the possible effects of the electrochemical reduction at the cathode end of the specimen. 相似文献
2.
Flash spark plasma sintering (FSPS) offers extremely high heating rates to consolidate ceramics at a short time. However, significant grain growth sometimes occurs accompanied by rapid densification. In this work, a FSPS apparatus available for applying pressure was used to sinter TaC ceramics from powder compacts without preheating. It is found that the use of a higher pressure can efficiently promote densification and retard significant grain growth. Dense bulk TaC ceramics (95.18%) with average grain size of 4.09 μm were obtained in 90 seconds under 80 MPa. Such a process should facilitate the fast preparation of refractory ceramics with fine-grained microstructure. 相似文献
3.
A SrTiO3 bicrystal with a low-angle twist grain boundary was fabricated using the spark plasma sintering (SPS) instrument. The atomic and electronic structure of the grain-boundary core was characterized using scanning transmission electron microscopy techniques. It was determined that the boundary is comprised of 2 types of defects with distinct electronic structures: screw dislocations and dislocations with an [001] edge component. The dislocations with an [001] edge component dissociated into 2 partial dislocations, separated by a stacking fault consisting of 2 Ti–O layers. The screw dislocations are attributed to the twist component of the grain boundary, while dislocations with an [001] edge component are attributed to surface steps on the original (100) SrTiO3 surfaces prior to diffusion bonding. The observed repeat distances between the dislocations with edge components along the grain-boundary plane are smaller than those discovered during traditional diffusion bonding experiments. The higher planar defect density observed in this study results partly from higher heating rates, lower processing temperatures, and shorter holding times during SPS processing. 相似文献
4.
Andréas Flaureau Alicia Weibel Geoffroy Chevallier Claude Estournès 《Journal of the European Ceramic Society》2021,41(6):3581-3594
Densification and grain growth mechanisms of Yttria-Stabilized Zirconia sintered by Spark Plasma Sintering are investigated. Sintering trajectories of four commercial submicronic powders with different average particle sizes and yttria amounts have been established and sintering regimes determined. Densification mechanisms are determined in the regime where densification is occurring without grain growth using a model derived from hot-pressing. Grain growth mechanisms are determined using the conventional power law in the regime where ceramics are fully densified. Densification occurs by grain boundary sliding accommodated by an in-series interface-reaction/lattice diffusion of cations or by an overlapping of surface diffusion and grain boundary sliding mechanisms for tetragonal stabilized zirconia and by dislocation climbing for fully stabilized zirconia. A normal grain growth occurs for each ceramic, all composed of a single phase, contrary to the two-phased ceramics obtained in literature where grain growth occurs by segregation at grain boundaries. 相似文献
5.
《Journal of the European Ceramic Society》2020,40(4):1086-1092
Grain coarsening normally occurs at the final stage of sintering, resulting in trapped pores within grains, which deteriorates the density and the performance of ceramics, especially for ultra-high temperature ceramics (UHTCs). Here, we propose to sinter this class of ceramics in a specific temperature range and coupled with a relatively high pressure. The retarded grain boundary migration and pressure-enhanced diffusion ensure the proceeding of densification even at final stage. A highly dense TaC ceramic (98.6 %) with the average grain size of 1.48 μm was prepared under 250 MPa via high pressure spark plasma sintering using a Cf/C die at 1850 °C. It was suggested that the final-stage densification is mainly attributed to grain boundary plastic deformation-involved mechanisms. Compared to the usual sintering route using a high temperature (>2000 °C) and normal pressure (<100 MPa), this work provides a useful strategy to acquire highly dense and fine-grained UHTCs. 相似文献
6.
Hiroaki Furuse Shunsuke Nakasawa Hidehiro Yoshida Koji Morita Tohru S. Suzuki Byung‐Nam Kim Yoshio Sakka Keijiro Hiraga 《Journal of the American Ceramic Society》2018,101(2):694-702
Conventional ceramic processing techniques do not produce ultrafine‐grained materials. However, since the mechanical and optical properties are highly dependent on the grain size, advanced processing techniques are needed to obtain ceramics with a grain size smaller than the wavelength of visible light for new laser sources. As an empirical study for lasing from an ultrafine‐grained ceramics, transparent Yb3+:Y2O3 ceramics with several doping concentrations were fabricated by spark plasma sintering (SPS) and their microstructures were analyzed, along with optical and spectroscopic properties. Laser oscillation was verified for 10 at.% Yb3+:Y2O3 ceramics. The laser ceramics in our study were sintered without sintering additives, and the SPS produced an ultrafine microstructure with an average grain size of 261 nm, which is about one order of magnitude smaller than that of ceramics sintered by conventional techniques. A load was applied during heating to enhance densification, and an in‐line transmittance near the theoretical value was obtained. An analysis of the crystal structure confirmed that the Yb3+:Y2O3 ceramics were in a solid solution. To the best of our knowledge, this study is the first report verifying the lasing properties of not only ultrafine‐grained but also Yb‐doped ceramics obtained by SPS. 相似文献
7.
Kannan Sairam Bathula Vishwanadh Jitendra K. Sonber Tammana S. R. Ch. Murthy Sanjib Majumdar Tarasankar Mahata Bikramjit Basu 《Journal of the American Ceramic Society》2018,101(6):2516-2526
The densification of nonoxide ceramics has been a known challenge in the field of engineering ceramics. The amount and type of sinter‐aid together with sintering conditions significantly influence the densification behavior and microstructure in nonoxide ceramics. In this perspective, the present work reports the use of Eu2O3 sinter‐aid and spark plasma sintering towards the densification of B4C. The densification is largely influenced by the solid‐state sintering reactions during heating to 1900°C. Based on the careful analysis of the heat‐treated powder mixture (B4C–Eu2O3) and sintered compacts, the competitive reaction pathways are proposed to rationalize the formation of EuB6 as dominant microstructural phase. An array of distinctive morphological features, including intragranular and intergranular EuB6 phase as well as characteristic defect structures (asymmetric twins, stacking faults and threaded dislocations) are observed within dense B4C matrix. An attempt has been made to explain the competition between microstructure development and densification. 相似文献
8.
Sree Koundinya Sistla Tarini Prasad Mishra Yuanbin Deng Anke Kaletsch Martin Bram Christoph Broeckmann 《Journal of the American Ceramic Society》2021,104(5):1978-1996
This study aims to understand the effect of the electrical field on microstructure evolution during field-assisted sintering or spark plasma sintering (FAST/SPS) of 10 mol% gadolinium-doped ceria (GDC) with experimental and numerical methods. The novelty of this study has been the observation of enhanced grain growth in the region closer to the anode, even under FAST/SPS conditions with electrical fields less than 5 V/cm. The grain growth kinetics, including determination of activation energy and grain-boundary mobility, were analyzed along the cross section of the samples for different temperatures and dwell periods. With an increase in distance from the anode, reduction in the activation energy for grain growth and grain-boundary mobility was observed. These observations attributed to the attraction of oxygen ions to the anode region under an electrical field with an increase in defects along the grain boundaries. Thereby an increase in the grain-boundary mobility and larger grains in that region were observed. A homogenous microstructure was observed in a case where the current did not flow through the sample. Furthermore, a numerical strategy has also been developed to simulate this behavior in addition to heat generation, heat transfer, and densification using Finite Element Methods (FEM) simulations. The simulation results provided an insight into the presence of a potential difference across the cross section of the samples. The simulation results were also in good agreement with the experimental observations. 相似文献
9.
Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics 下载免费PDF全文
Shuichi Funahashi Jing Guo Hanzheng Guo Ke Wang Amanda L. Baker Kosuke Shiratsuyu Clive A. Randall 《Journal of the American Ceramic Society》2017,100(2):546-553
With the cold sintering process (CSP), it was found that adding acetic acid to an aqueous solution dramatically changed both the densities and the grain microstructures of the ZnO ceramics. Bulk densities >90% theoretical were realized below 100°C, and the average conductivity of CSP samples at around 300°C was similar to samples conventionally sintered at 1400°C. Frequently, ZnO is also used as a model ceramic system for fundamental studies for sintering. By the same procedure as the grain growth of the conventional sintering, the kinetic grain growth exponent of the CSP samples was determined as N=3, and the calculated activated energy of grain growth was 43 kJ/mol, which is much lower than that reported using conventional sintering. The evidence for grain growth under the CSP is important as it indicates that there is a genuine sintering process being activated at these low temperatures and it is beyond a pressurized densification process. 相似文献
10.
Ji-Hwoan Lee Byung-Nam Kim Byung-Koog Jang 《Journal of the American Ceramic Society》2021,104(11):5501-5508
Transparent Y2O3 ceramics were successfully fabricated by spark plasma sintering applying a two-step pressure and heating profile. Through the shrinkage curve of the single-step SPS profile, it was confirmed that shrinkage occurred at 800°C–1250°C, and it was selected as the two-step pressure profile. After the first-step SPS stage at 1250°C, the second-step SPS stage, which had the highest real in-line transmittance, was completed at 1500°C. The two-step SPS profile improved the shrinkage behavior and was able to achieve sufficient densification without excessive coarsening. As a result, the normalized real in-line transmittance to 1 mm was 80.6% at 1100 nm, which is close to the theoretical transmittance of 81.6%. The two-step pressure and heating profile in the SPS process was a significant advantage in manufacturing ceramics that were transparent and had sufficient densification. 相似文献
11.
Moritz Kindelmann Moritz L Weber Mark Stamminger Rahel Buschhaus Uwe Breuer Martin Bram Olivier Guillon 《Journal of the American Ceramic Society》2022,105(5):3498-3509
Due to the increasing number of applications for ceramic components in reactive etching processes, the interest in the specific erosion behavior of highly etch-resistant materials like yttrium oxide (Y2O3) has increased in the past years. Despite the large number of investigations already existing in this field, a more general understanding of the erosion mechanisms still lacks due to the limited comparability of these investigations. The huge difference in the kind of etching setups, processing parameters (bias voltage and plasma gas composition), and sample microstructures prevented consistent conclusions so far. To achieve a more general understanding, this study investigates the erosion behavior Y2O3 under a broad spectrum of plasma etching parameters. Therefore, the bias voltage is increased from 50 to 300 V and the plasma gas composition is gradually changed from Ar-rich to CF4-rich compositions. This systematic approach allows to directly correlate the morphology changes caused by plasma erosion with the related plasma etching parameters and enables to better understand their influence on the depth of physical and chemical interactions, surface damage, and etching rate. We discovered three distinct erosion regimes, which exhibit specific erosion characteristics. Using these observations, a schematic processing map for Y2O3 was developed, which could help to estimate the severity of the erosion attack dependent on the processing parameters. 相似文献
12.
Densification of 8Y‐Tetragonal‐Stabilized Zirconia Optoceramics with Improved Optical Properties by Y Segregation 下载免费PDF全文
Mythili Prakasam François Weill Eric Lebraud Oudomsack Viraphong Sonia Buffiére Alain Largeteau 《International Journal of Applied Ceramic Technology》2016,13(5):904-911
8% Yttria‐stabilized zironcia (8YSZ) transparent ceramics have a wide technological applications. Segregation of the Y around the grain boundaries is favored by slow heating rate. The optimized sintering parameters helped in obtaining transparent ceramics of 8YSZ with a high percentage of cubic phase in addition to the presence of tetragonal phase. HRTEM was used to verify the grain growth suppression and to observe the presence of the cubic phase. The presence of cubic phase has suppressed the grain growth, which increased the transparency in the visible and infrared region without the addition of dopants or by utilizing high pressure. 相似文献
13.
Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: I. grain growth study 下载免费PDF全文
The kinetics of mass transport is central to ceramic processing and device stability. In this work, the effect of electrical and hydrogen reduction on the grain growth behavior of doped zirconia and ceria has been investigated. Faster grain growth has been observed under reducing conditions in all cases. The results firmly establish that a depressed local oxygen potential can enhance cation kinetics in fluorite‐structured oxide ceramics. Meanwhile, a large electrical current can generate a sharp, spatially varied oxygen potential profile, creating a graded microstructure with a dramatic grain size transition across the length of the sample. 相似文献
14.
Dmytro Demirskyi Tohru S. Suzuki Kyosuke Yoshimi Oleg O. Vasylkiv 《Journal of the American Ceramic Society》2022,105(6):4277-4290
In this study we explored the densification, microstructure evolution, and high-temperature properties of bulk lanthanum hexaboride. LaB6 bulks were consolidated using spark-plasma sintering only in the temperature range between 1400°C and 1700°C. We adopted flash spark plasma sintering (SPS) of LaB6 using a direct current heating without a graphite die. We observed a peculiar grain-size gradient when coarse grains exceeding 300 μm were observed on the top side of the specimen, while the bottom side had a grain size of 15–20 μm. Such large grain was not observed using SPS at 2000°C, suggesting that these might originate from a local overheating. Based on the three-point flexural tests, it was observed that the toughness and strength of the LaB6 were acceptable at room-temperature (3.1 ± 0.2 MPa m1/2, 300 ± 20 MPa). However, at 1600°C, these parameters would decrease to 1.3 ± 0.1 MPa m1/2 and 120 ± 40 MPa, respectively. 相似文献
15.
放电等离子烧结制备Ti/Al2O3复合材料 总被引:1,自引:0,他引:1
Ti基金属复合材料是一种新型高温结构材料.本文利用放电等离子烧结技术,在温度1250℃、压力30MPa、真空度6Pa,保温时间10min条件下,制备了相对致密度较高的Ti/Al2O3复合材料.借助XRD,SEM,EDS等测试手段对该复合材料的物相组成、界面反应、微观结构以及致密度进行了观察与分析.结果表明:利用SPS技术制备Ti/Al2O3的复合材料,晶粒细小且分布均匀,结构致密、2相之间结合状态良好,相对致密度随材料中陶瓷相含量的增多而有所降低.Ti,Al2O32相之间无明显界面化学反应发生. 相似文献
16.
采用固相合成法及放电等离子烧结制备了Ca3Co4(FxO1-x)9(x=0,0.01,0.02)块体样品,系统研究了氟(F)掺杂对Ca3Co4O9微观结构和热电性能的影响。结果表明:F掺杂样品均为单一化合物。在300~900K,与纯样相比,F掺杂样品的Seebeck系数变化较小,电导率显著增大,热导率先减小后随F掺量的增加而增大。x=0.01时,样品具有最高电导率和最低热导率,分别为14×103S/m和2.16W/(m·K)。在900K,样品最大热电优值(ZT值)为0.16,较纯样品的提高了近100%。 相似文献
17.
Spark Plasma Sintering of Alumina 总被引:7,自引:1,他引:7
Zhijian Shen Mats Johnsson Zhe Zhao Mats Nygren 《Journal of the American Ceramic Society》2002,85(8):1921-1927
A systematic study of various spark plasma sintering (SPS) parameters, namely temperature, holding time, heating rate, pressure, and pulse sequence, was conducted to investigate their effect on the densification, grain-growth kinetics, hardness, and fracture toughness of a commercially available submicrometer-sized Al2 O3 powder. The obtained experimental data clearly show that the SPS process enhances both densification and grain growth. Thus, Al2 O3 could be fully densified at a much lower temperature (1150°C), within a much shorter time (minutes), than in more conventional sintering processes. It is suggested that the densification is enhanced in the initial part of the sintering cycle by a local spark-discharge process in the vicinity of contacting particles, and that both grain-boundary diffusion and grain-boundary migration are enhanced by the electrical field originating from the pulsed direct current used for heating the sample. Both the diffusion and the migration that promote the grain growth were found to be strongly dependent on temperature, implying that it is possible to retain the original fine-grained structure in fully densified bodies by avoiding a too high sintering temperature. Hardness values in the range 21–22 GPa and fracture toughness values of 3.5 ± 0.5 MPa·m1/2 were found for the compacts containing submicrometer-sized Al2 O3 grains. 相似文献
18.
19.
Ryosuke Urakami Yukio Sato Masayoshi Ogushi Takeshi Nishiyama Aoi Goto Kazuhiro Yamada Ryo Teranishi Kenji Kaneko Mikito Kitayama 《Journal of the American Ceramic Society》2017,100(3):1231-1240
Microstructure and mechanical property of silicon nitride (Si3N4) ceramic are strongly dependent on the selection of sintering additives. When rare‐earth (RE) oxide is used as the sintering additive, segregation of RE ions at interface between Si3N4 grain and intergranular glassy film (IGF) is believed to play a critical role. Although the ionic radius of RE ion is known to be an empirical parameter to modify the mechanical property, the correlation between the segregated ions and their ionic radii is still under controversy. In order to address this issue, (i) rate of α‐β phase transformation and (ii) segregation behavior at the interface were studied for Si3N4 ceramics sintered using mixture of La2O3 and Lu2O3 as additives in this study. Specimens of Lu content 30% and higher exhibited lower activation energies for the α‐β phase transformation as compared with those of Lu content 20% and lower. In terms of the segregation behavior, La was preferably segregated at one site and Lu at the other site along β‐Si3N4/IGF interface in the specimens of Lu content 30% and higher. It is understood from these results that Lu segregation site should be more closely related with grain growth. 相似文献
20.
Bola Yoon Devinder Yadav Rishi Raj Emanuele Sortino Sanjit Ghose Pankaj Sarin Daniel Shoemaker 《Journal of the American Ceramic Society》2018,101(5):1811-1817
In‐situ flash experiments on rutile TiO2 were performed at the synchrotron at the Brookhaven National Laboratory. Pair distribution function analysis of total X‐ray scattering measurements yielded mean‐square atomic displacements of oxygen and titanium atoms during the progression of the 3 stages of flash. The displacements are measured to be far greater for oxygen atoms than for titanium atoms. These large displacements may signal an “elastic softening” of the lattice, which, recently, has been predicted as a precursor to the onset of flash. 相似文献