首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Youssefi S  Waring MS 《Indoor air》2012,22(5):415-426
The ozonolysis of terpenoids generates secondary organic aerosol (SOA) indoors. Models of varying complexity have been used to predict indoor SOA formation, and many models use the SOA yield, which is the ratio of the mass of produced SOA and the mass of consumed reactive organic gas. For indoor simulations, the SOA yield has been assumed as a constant, even though it depends on the concentration of organic particles in the air, including any formed SOA. We developed two indoor SOA formation models for single terpenoid ozonolysis, with yields that vary with the organic particle concentration. The models have their own strengths and were in agreement with published experiments for d-limonene ozonolysis. Monte Carlo analyses were performed, which simulated different residential and office environments to estimate ranges of SOA concentrations and yields for d-limonene and α-pinene ozonolysis occurring indoors. Results indicate that yields are highly variable indoors and are most influenced by background organic particles for steady-state formation and indoor ozone concentration for transient peak formation. Additionally, a review of ozonolysis yields for indoor-relevant terpenoids in the literature revealed much uncertainty in their values at low concentrations typical of indoors. PRACTICAL IMPLICATIONS: The results in this study suggest important factors that govern indoor secondary organic aerosol (SOA) formation and yields, in typical residential and office spaces. This knowledge informs the development and comparison of control strategies to reduce indoor-generated SOA. The ranges of SOA concentrations predicted indoors allow the quantification of the effects of sorptive interactions of semi-volatile organic compounds or reactive oxygen species with SOA, filter loading owing to SOA formation, and impacts of SOA on health, if links are established.  相似文献   

2.
对一普通办公楼及甲级办公楼办公室内、外颗粒物浓度进行监测。监测结果显示建筑室外颗粒物污染严重;普通办公楼室内颗粒物污染严重,甲级办公楼室内颗粒物浓度较低;甲级办公楼室内外颗粒物浓度I/O比值较普通办公楼小;两办公楼室内、外的PM2.5污染均较PMIO污染频繁;室内人和物的剧烈活动、吸烟等活动会造成严重的室内颗粒物污染。  相似文献   

3.
室内颗粒污染的源辨识与源解析   总被引:1,自引:0,他引:1  
辨识室内颗粒物来源与分析室内颗粒物元素特征称为源辨识与源解析,是进行室内空气污染控制与净化的理论依据与前提条件。本文通过对室内空气品质(IAQ)模型进行理论分析,阐明了室内外污染源与室内颗粒物浓度之间的关系。指出室内颗粒污染物研究应根据污染源已知与未知两种情况进行讨论,并针对不同的情况分别采用源辨识与源解析技术。  相似文献   

4.
This study evaluated the interrelations between indoor and outdoor bioaerosols in a bedroom under a living condition. Two wideband integrated bioaerosol sensors were utilized to measure indoor and outdoor particulate matter (PM) and fluorescent biological airborne particles (FBAPs), which were within a size range of 0.5-20 μm. Throughout this one-month case study, the median proportion of FBAPs in PM by number was 19% (5%; the interquartile range, hereafter) and 17% (3%) for indoors and outdoors, respectively, and those by mass were 78% (12%) and 55% (9%). According to the size-resolved data, FBAPs dominated above 2 and 3.5 μm indoors and outdoors, respectively. Comparing indoor upon outdoor ratios among occupancy and window conditions, the indoor FBAPs larger than 3.16 μm were dominated by indoor sources, while non-FBAPs were mainly from outdoors. The occupant dominated the indoor source of both FBAPs and non-FBAPs. Under awake and asleep, count- and mass-based mean emission rates were 45.9 and 18.7 × 106 #/h and 5.02 and 2.83 mg/h, respectively. Based on indoor activities and local outdoor air quality in Singapore, this study recommended opening the window when awake and closing it during sleep to lower indoor bioaerosol exposure.  相似文献   

5.
Some indoor activities increase the number concentration of small particles and, hence, enhance the dose delivered to the lungs. The received particle dose indoors may exceed noticeably the dose from ambient air under routine in-house activities like cooking. In the present work, the internal dose by inhalation of ultrafine and fine particles is assessed, using an appropriate mechanistic model of lung deposition, accommodating aerosol, and inhalation dynamics. The analysis is based on size distribution measurements (10-350 nm) of indoor and outdoor aerosol number concentrations in a typical residence in Athens, Greece. Four different cases are examined, namely, a cooking event, a no activity period indoors and the equivalent time periods outdoors. When the cooking event (frying of bacon-eggs with a gas fire) occurred, the amount of deposited particles deep into the lung of an individual indoors exceeded by up to 10 times the amount received by an individual at the same time period outdoors. The fine particle deposition depends on the level of physical exertion and the hygroscopic properties of the inhaled aerosol. The dose is not found linearly dependant on the indoor/outdoor concentrations during the cooking event, whereas it is during the no activity period. PRACTICAL IMPLICATIONS: The necessity for determining the dose in specific regions of the human lung, as well as the non-linear relationship between aerosol concentration and internal dose makes the application of dosimetry models important. Lung dose of fine and ultrafine particles, during a cooking event, is compared with the dose at no indoor activity and the dose received under outdoor exposure conditions. The dose is expressed in terms of number or surface of deposited particles. This permits to address the dosimetry of very small particles, which are released by many indoor sources but represent a slight fraction of the particulate matter mass. The enhancement of the internal dose resulting from fine and ultrafine particles generated during the cooking event vs. the dose when no indoor source is active is assessed. The results for those cases are also compared with the dose calculated for the measured aerosol outdoors.  相似文献   

6.
Abstract Various studies on indoor and outdoor particulate matter in the urban environment in the vicinity of busy arterial roads in the centre of the subtropical city of Brisbane have indicated that the revised United States Environmental Protection Agency National Ambient Air Quality Standards (US EPA NAAQS) for Particulate matter PM2.5 could be exceeded not only outdoors but also indoors. The aim of this work was to investigate outdoor exposure to submicrometer particles and their relationship with indoor exposure in a hypothetical office building located in the vicinity of a busy arterial road. The outdoor exposure values and trends were measured in terms of particle number in the submicrometer size range and were then recalculated to represent mass concentration trends. The results of this study indicate that exposure to PM0.7 particles in ambient air close to a busy road often exceeds the levels of the annual and 24-hour US EPA NAAQS PM2.5 standards. It is likely that exposure to PM2.5 is even higher, and may significantly exceed these standards.  相似文献   

7.
Outdoor aerosols are transported indoors, where their component concentrations depend on aerosol size, physiochemical properties, indoor sources and losses, and cross‐environment gradients of temperature and relative humidity. We explored these dependencies by measuring real‐time outdoor and indoor non‐refractory, submicron (PM1) aerosol component mass concentrations in a mixed‐use laboratory space with an Aerodyne mini‐aerosol mass spectrometer (AMS) and black carbon (BC) with an aethalometer. The median indoor/outdoor (I/O) ratios were 0.60 for sulfate, 0.25 for nitrate, 0.52 for ammonium, 0.73 for organics, and 0.61 for BC. Positive matrix factorization (PMF) on organic aerosol data identified hydrocarbon‐like (HOA), cooking (COA), and oxygenated (OOA) factors. By assuming sulfate was nonvolatile, lost only by mechanical processes, and without indoor sources, the transformations of other components i due to partitioning changes or indoor sources were parameterized by normalizing their I/O ratios by sulfate's I/O ratio, that is, (I/O)i/SO4. Component‐specific behavior was quantified by regressions of (I/O)i/SO4 to outdoor‐to‐indoor temperature differences. Nitrate and HOA strongly and OOA weakly showed losses with increasing temperatures indoors vs. outdoors, and HOA likely had an indoor source. To our knowledge, this is the first reported deployment of an AMS to analyze real‐time indoor aerosol composition and outdoor‐to‐indoor transformation.  相似文献   

8.
Organic aerosol (OA) is chemically dynamic, continuously evolving by oxidative chemistry, for instance, via hydroxyl radical (OH) reactions. Studies have explored this evolution (so‐called OA aging) in the atmosphere, but none have investigated it indoors. Aging organic molecules in both particle and gas‐phases undergo changes in oxygen content and volatility, which may ultimately either enhance or reduce the condensed‐phase OA concentration (COA). This work models OH‐induced aging using the two‐dimensional volatility basis set (2D‐VBS) within an indoor model and explores its significance on COA relative to prior modeling methodologies which neglect aging transformations. Lagrangian, time‐averaged, and transient indoor simulations were conducted. The time‐averaged simulations included a Monte Carlo procedure and sensitivity analysis, using input distributions typical of U.S. residences. Results demonstrate that indoors, aging generally leads to COA augmentation. The extent to which this is significant is conditional upon several factors, most notably temperature, OH exposure, and OA mass loading. Time‐averaged COA was affected minimally in typical residences (<5% increase). However, some plausible cases may cause stronger COA enhancements, such as in a sunlit room where photolysis facilitates significant OH production (~20% increase), or during a transient OH‐producing cleaning event (~35% peak increase).  相似文献   

9.
We studied the effect of ventilation and air filtration systems on indoor air quality in a children's day-care center in Finland. Ambient air nitrogen oxides (NO, NO2) and particles (TSP, PM10) were simultaneously measured outdoors and indoors with automatic nitrogen oxide analyzers and dust monitoring. Without filtration nitrogen oxides and particulate matter generated by nearby motor traffic penetrated readily indoors. With chemical filtration 50-70% of nitrogen oxides could be removed. Mechanical ventilation and filtration also reduced indoor particle levels. During holidays and weekends when there was no opening of doors and windows and no particle-generating activity indoors, the indoor particle level was reduced to less than 10% of the outdoor level. At times when outdoor particle concentrations were high during weekdays, the indoor level was about 25% of the outdoor level. Thus, the possible adverse health effects of nitrogen oxides and particles indoors could be countered by efficient filtration. We also showed that inclusion of heat recovery equipment can make new ventilation installations economical.  相似文献   

10.
Indoor and outdoor aerosol sampling was conducted in two New York State Counties, Suffolk and Onondaga, during the period of January 6 and April 15, 1986. Week-long fine particle mass samples were collected indoors and outdoors for a total of 596 samples taken in 394 homes. The aerosol samples were analyzed by X-ray fluorescence for the following elements: Si, S, Cl, K, Ca, V, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Cd, and Pb. Lastly, aerosol mass concentrations were determined gravimetrically. Homes included in this study had one or more of the following sources: cigarette smoking, kerosene heaters, wood burning and gas stoves. Homes with none of the above sources were also included. Comparisons between mass and elemental concentrations among the different home groups allowed the investigation of the elemental profiles and importance of the indoor sources. From the five investigated sources, cigarette smoking was found to be the most important, and to a lesser extent, kerosene heaters. Finally, gas stoves did not contribute to the observed indoor aerosol mass and elemental concentrations, but other unknown indoor sources did contribute to indoor aerosol concentrations. Room-to-room differences in mass and elemental concentrations were also investigated. The results of these analyses suggested that concentrations measured in the living area and kitchen are identical, within analytical errors. Therefore, the indoor environment can be characterized as well mixed.  相似文献   

11.
The concentration of ultrafine particles (0.01 to greater than 1 microm) was measured in some rural and urban areas of Sweden and Denmark. The instruments used are handheld real-time condensation particle counters, models CPC 3007 and P-Trak 8525, both manufactured by TSI. Field measurements in Sweden were conducted in a few residential and office buildings, while in Denmark the measurement sites comprised two office buildings, one of them located in a rural area. The concentration of UFPs was measured simultaneously indoors and outdoors with condensation particle counters. The results revealed that the outdoor-generated particle levels were major contributors to the indoor particle number concentration in the studied buildings when no strong internal source was present. The results showed that in office buildings, the UFP concentrations indoors were typically lower and correlated fairly well to the number concentration outdoors. The determined indoor-outdoor ratios varied between 0.5 and 0.8. The indoor levels of UFPs in offices where smoking is allowed was sometimes recorded higher than outdoor levels, as in one of the Danish offices. In residential buildings, the indoor number concentration was strongly influenced by several indoor activities, e.g., cooking and candle burning. In the presence of significant indoor sources, the indoor/outdoor (IO) ratio exceeded unity. The magnitude of UFP concentrations was greater in the large city of Copenhagen compared to the medium-size city of Gothenburg and lowest at more rural sites.  相似文献   

12.
Concentrations of 38 organic air pollutants including aromatic hydrocarbons (AHCs), carbonyl compounds (CCs), volatile organic halogenated compounds (VOHCs), and organophosphorus compounds (OPCs) were measured in indoor and outdoor air in an industrial city, Shimizu, Shizuoka Prefecture, Japan. Levels of pollutants tended to be higher indoors than outdoors in both summer and winter except for benzene, carbon tetrachloride, trichloroethylene, tetrachloroethylene, and dichlorvos (DDVP). This trend was especially pronounced for CCs such as formaldehyde and acetaldehyde. For the organic air pollutants, the concentrations of AHCs and VOHCs substantially increased in winter, but not those of CCs and OPCs; the trends were similar for both indoors and outdoors. We investigated possible indoor sources of pollutants statistically. Multiple regression analysis of corresponding indoor and outdoor concentrations and the responses to our questionnaire showed that indoor concentrations of certain AHCs were significantly affected by their outdoor concentrations and cigarette smoking. For formaldehyde, indoor concentrations were significantly affected by house age and the presence of carpet or pets. For p-dichlorobenzene (pDCB), the concentrations in bedroom trended to be higher than those in other indoors and outdoors, suggested that mothballs for clothes present in bedrooms are the principal indoor source of pDCB. We compared indoor and outdoor pollutant concentrations to acceptable risk limits for 11 organic air pollutants. In indoors without smoking samples, the geometric mean concentrations of benzene, formaldehyde, acetaldehyde, carbon tetrachloride, pDCB, and DDVP exceeded the equivalent concentration representing the upper bound of one-in-one-hundred-thousand (1x10(-5)) excess risk over a lifetime of exposure.  相似文献   

13.
Cao JJ  Lee SC  Chow JC  Cheng Y  Ho KF  Fung K  Liu SX  Watson JG 《Indoor air》2005,15(3):197-204
Six residences were selected (two roadside, two urban, and two rural) to evaluate the indoor-outdoor characteristics of PM(2.5) (aerodynamic diameter <2.5 microm) carbonaceous species in Hong Kong during March and April 2004. Twenty-minute-averaged indoor and outdoor PM(2.5) concentrations were recorded by DustTrak samplers simultaneously at each site for 3 days to examine diurnal variability of PM(2.5) mass concentrations and their indoor-to-outdoor (I/O) ratios. Daily (24-h average) indoor/outdoor PM(2.5) samples were collected on pre-fired quartz-fiber filters with battery-powered portable mini-volume samplers and analyzed for organic and elemental carbon (OC, EC) by thermal/optical reflectance (TOR) following the Interagency Monitoring of Protected Visual Environments (IMPROVE) protocol. The average indoor and outdoor concentrations of 24 h PM(2.5) were 56.7 and 43.8 microg/m(3), respectively. The short-term PM(2.5) profiles indicated that the penetration of outdoor particles was an important contributor to indoor PM(2.5), and a household survey indicated that daily activities were also sources of episodic peaks in indoor PM(2.5). The average indoor OC and EC concentrations of 17.1 and 2.8 microg/m(3), respectively, accounted for an average of 29.5 and 5.2%, respectively, of indoor PM(2.5) mass. The average indoor OC/EC ratios were 5.8, 9.1, and 5.0 in roadside, urban, and rural areas, respectively; while average outdoor OC/EC ratios were 4.0, 4.3, and 4.0, respectively. The average I/O ratios of 24 h PM(2.5), OC, and EC were 1.4, 1.8, and 1.2, respectively. High indoor-outdoor correlations (r(2)) were found for PM(2.5) EC (0.96) and mass (0.81), and low correlations were found for OC (0.55), indicative of different organic carbon sources indoors. A simple model implied that about two-thirds of carbonaceous particles in indoor air are originated from outdoor sources. PRACTICAL IMPLICATIONS: Indoor particulate pollution has received more attentions in Asia. This study presents a case study regarding the fine particulate matter and its carbonaceous compositions at six residential homes in Hong Kong. The characteristics and relationship of atmospheric organic and elemental carbon were discussed indoors and outdoors. The distribution of eight carbon fractions was first reported in indoor samples to interpret potential sources of indoor carbonaceous particles. The data set can provide significant scientific basis for indoor air quality and epidemiology study in Hong Kong and China.  相似文献   

14.
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. PRACTICAL IMPLICATIONS: This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.  相似文献   

15.
PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and combustion processes.  相似文献   

16.
Indoor air quality (IAQ) has been a matter of public concern these days whereas air pollution is normally monitored outdoors as part of obligations under the National air quality strategies. Much little is known about levels of air pollution indoors. Simultaneous measurements of indoor and outdoor carbon monoxide (CO) and oxides of nitrogen (NO and NO2) concentrations were conducted at three different environments, i.e. rural, urban and roadside in Agra, India, using YES - 205 multigas monitor during the winter season, i.e. October 2002-February 2003. A statistical correlation analysis of indoor concentration levels with outdoor concentrations was carried out. CO was maximum at roadside locations with indoor concentrations 2072.5 +/- 372 p.p.b. and outdoor concentrations 1220 +/- 281 p.p.b. (R2 = 0.005). Oxides of nitrogen were found maximum at urban site; NO concentration was 385 +/- 211 and 637 +/- 269 p.p.b. for indoors and outdoors respectively (R2 = 0.90792), where as NO2 concentration was 255 +/- 146 p.p.b. for indoors and 460 +/- 225 p.p.b. for outdoors (R2 = 0939464). Although indoor concentration at all the houses of the three sites have a positive correlation with outdoor concentration, CO variation indoors was very less due to outdoor sources. An activity schedule of inside and outside these homes were also prepared to see its influence and concentrations of pollutants. As standards for indoor air were not available for the Indian conditions these were compared with the known standards of other countries, where as outdoor concentrations were compared with the standards given by the Central Pollution Control board, which shows that indoor concentrations of both NO(x) and CO lie below permissible limits but outdoor concentrations of NO(x) cross the standard limits. PRACTICAL IMPLICATIONS: 'India currently bears the largest number of indoor air pollution (IAP) related health problems in world. An estimated 500,000 women & children die in India each year due to IAP-related cause--this is 25% of estimated IAP-related deaths worldwide. This study will be useful for policy makers, health related officials, academicians and Scientists who have interest in countries of developing world'.  相似文献   

17.
The effects of air filtration and ventilation on indoor particles were investigated using a single-zone mathematical model. Particle concentration indoors was predicted for several I/O conditions representing scenarios likely to occur in naturally and mechanically ventilated buildings. The effects were studied for static and dynamic conditions in a hypothetical office building. The input parameters were based on real-world data. For conditions with high particle concentrations outdoors, it is recommended to reduce the amount of outdoor air delivered indoors and the necessary reduction level can be quantified by the model simulation. Consideration should also be given to the thermal comfort and minimum outdoor air required for occupants. For conditions dominated by an indoor source, it is recommended to increase the amount of outdoor air delivered indoors and to reduce the amount of return air. Air filtration and ventilation reduce particle concentrations indoors, with the overall effect depending on efficiency, location and the number of filters applied. The assessment of indoor air quality for specific conditions could be easily calculated by the model using user-defined input parameters.  相似文献   

18.
X. Chen  P. K. Hopke 《Indoor air》2010,20(4):320-328
Abstract Limonene ozonolysis was examined under conditions relevant to indoor environments in terms of temperatures, air exchange rates, and reagent concentrations. Secondary organic aerosols (SOA) produced and particle‐bound reactive oxygen species (ROS) were studied under situations when the product of the two reagent concentrations was constant, the specific concentration combinations play an important role in determining the total SOA formed. A combination of concentration ratios of ozone/limonene between 1 and 2 produce the maximum SOA concentration. The two enantiomers, R‐(+)‐limonene and S‐(?)‐limonene, were found to have similar SOA yields. The measured ROS concentrations for limonene and ozone concentrations relevant to prevailing indoor concentrations ranged from 5.2 to 14.5 nmol/m3 equivalent of H2O2. It was found that particle samples aged for 24 h in freezer lost a discernible fraction of the ROS compared to fresh samples. The residual ROS concentrations were around 83–97% of the values obtained from the analysis of samples immediately after collection. The ROS formed from limonene ozonolysis could be separated into three categories as short‐lived, high reactive, and volatile; semi‐volatile and relatively stable; non‐volatile and low‐reactive species based on ROS measurements under various conditions. Such chemical and physical characterization of the ROS in terms of reactivity and volatility provides useful insights into nature of ROS.

Practical Implications

A better understanding of the formation mechanism of secondary organic aerosol generated from indoor chemistry allows us to evaluate and predict the exposure under such environments. Measurements of particle‐bound ROS shed light on potential adverse health effect associated with exposure to particles.
  相似文献   

19.
Outdoor particulate matter (PM(10)) is associated with detrimental health effects. However, individual PM(10) exposure occurs mostly indoors. We therefore compared the toxic effects of classroom, outdoor, and residential PM(10). Indoor and outdoor PM(10) was collected from six schools in Munich during teaching hours and in six homes. Particles were analyzed by scanning electron microscopy and X-ray spectroscopy (EDX). Toxicity was evaluated in human primary keratinocytes, lung epithelial cells and after metabolic activation by several human cytochromes P450. We found that PM(10) concentrations during teaching hours were 5.6-times higher than outdoors (117 ± 48 μg/m(3) vs. 21 ± 15 μg/m(3), P < 0.001). Compared to outdoors, indoor PM contained more silicate (36% of particle number), organic (29%, probably originating from human skin), and Ca-carbonate particles (12%, probably originating from paper). Outdoor PM contained more Ca-sulfate particles (38%). Indoor PM at 6 μg/cm(2) (10 μg/ml) caused toxicity in keratinocytes and in cells expressing CYP2B6 and CYP3A4. Toxicity by CYP2B6 was abolished with the reactive oxygen species scavenger N-acetylcysteine. We concluded that outdoor PM(10) and indoor PM(10) from homes were devoid of toxicity. Indoor PM(10) was elevated, chemically different and toxicologically more active than outdoor PM(10). Whether the effects translate into a significant health risk needs to be determined. Until then, we suggest better ventilation as a sensible option. PRACTICAL IMPLICATIONS: Indoor air PM(10) on an equal weight base is toxicologically more active than outdoor PM(10). In addition, indoor PM(10) concentrations are about six times higher than outdoor air. Thus, ventilation of classrooms with outdoor air will improve air quality and is likely to provide a health benefit. It is also easier than cleaning PM(10) from indoor air, which has proven to be tedious.  相似文献   

20.
People spend the majority of their time indoors mostly in the domestic environment, where their health may be effected by significant airborne particulate pollution. The indoor/outdoor air quality at six homes in Wales and Cornwall was investigated, based on different locations (urban, suburban, rural) and household characteristics (smokers, non-smokers). The spatial and temporal variations in PM10 mass were monitored for a calendar year, including ambient weather conditions. The activities of individuals within a household were also recorded. Monitoring of PM10 took place inside (kitchen, living room, bedroom) homes, along with concomitant collections outdoors. Samples were subjected to gravimetric analysis to determine PM10 concentrations and examined by scanning electron microscopy to identify the types of particles present on the filters. The results of the study show there are greater masses of PM10 indoors, and that the composition of the indoor PM10 is controlled by outdoor sources, and to a lesser extent by indoor anthropogenic activities, except in the presence of tobacco smokers. The indoor and outdoor PM10 collected was characterised as being a heterogeneous mixture of particles (soot, fibres, sea salt, smelter, gypsum, pollen and fungal spores).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号