首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(16):26642-26653
The electromagnetic wave (EMW) absorbing materials are widely applied to attenuate the useless and harmful EMW generated from wireless communication and 5G networks, which could protect the human health and electronic device safety. In this study, La-doped SiBCN ceramics with broadband EMW absorption capability were prepared via generating abundance of heterointerfaces, as graphene were in-situ grown by La2O3 catalyzing. The graphene in-situ formed in the ceramics can be attributed to the La atom decreasing the potential energy of the free carbon ring nucleation from −760.9 Ha to −8984.3 Ha. Consequently, the electrical conductivity of the SiBCN ceramics improved from 12.360 S/m to 18.025 S/m, the minimum reflection loss (RLmin) obtained was −26.48 dB at 7.2 GHz and the effective absorption bandwidth (EAB) was 6.32 GHz (11.68–18.00 GHz) at a thickness of 1.7 mm. At 700 °C, the RLmin and EAB values reached −43.18 dB and 4.2 GHz, respectively. The enhanced EMW absorbing capability can be attributed to the rationally tailor the heterointerfaces to improve the polarization loss and conduction loss of the SiBCN ceramics. The interfaces between graphene and amorphous phases generate built-in electric fields and space chare regions to strengthen the interface polarization, while the electrons migrating rapidly in the graphene and other crystals improved the electrical conductivity. The positive effect of heterointerfaces regulation of graphene in-situ growth improved the dielectric loss capacity of the SiBCN ceramics; therefore, this study provides a feasible method to enhance the EMW absorption capability of polymer-derived ceramics.  相似文献   

2.
Demand for high-performance electromagnetic (EM) wave absorbing materials with high-temperature resistance is always urgent for application in a harsh environment. In this contribution, two-dimensional material, Ti3C2Tx MXene, was introduced into a hyperbranched polyborosilazane. After pyrolyzation, the as-prepared TiC/SiBCN ceramics present excellent EM wave absorption in X-band. The TiC nanograins appearing after annealing provide multilevel reflection and interface polarization. Dipole polarization formed at interface defects, in company with interfacial polarization, also makes a great contribution to enhanced EM wave absorption. The TiC/SiBCN nanocomplex prepared with 5 wt% Ti3C2Tx MXene possesses a minimum reflection coefficient of −45.44 dB at 10.93 GHz and abroad bandwidth 8.4 and 12.4 GHz, almost covering the entire X-band. Tuning the thickness in the range of 2.35-2.54 mm, the effective absorption band can achieve the entire X-band. And the EM wave absorbing performance has been maintained to a large extent at 600°C with the minimum reflection coefficient of −26.12 dB at 12.13 GHz and the effective absorption bandwidth of 2 GHz. Last but not the least, TiC/SiBCN ceramics offer a good thermal stability in argon as well as in air atmosphere, making it possible to serve in high-temperature detrimental environments. This study is expected to provide a new perspective for the design of high-performance absorbing materials that are able to be used in harsh environments, especially in high temperatures.  相似文献   

3.
The combination of multiple loss characteristics is an effective approach to achieve broadband microwave wave absorption performance. The Fe-doped SiOC ceramics were synthesized by polymer derived ceramics (PDCs) method at 1500 °C, and their dielectric and magnetic properties were investigated at 2–18 GHz. The results showed that adding Fe content effectively controlled the composition and content of multiphase products (such as Fe3Si, SiC, SiO2 and turbostratic carbon). Meanwhile, the Fe promoted the change of the grain size. The Fe3Si enhanced the magnetic loss, and the SiC and turbostratic carbon generated by PDCs process significantly increased the polarization and conductance loss. Besides, the magnetic particles Fe3Si and dielectric particles SiO2 improved the impedance matching, which was beneficial to EM wave absorption properties. Impressively, the Fe-doped SiOC ceramics (with Fe addition of 3 wt %) presented the minimum reflection coefficient (RCmin) of ?20.5 dB at 10.8 GHz with 2.8 mm. The effective absorption bandwidth (EAB, RC < ?10 dB) covered a wide frequency range from 5 GHz to 18 GHz (covered the C, X and Ku-band) when the absorbent thickness increased from 2 mm to 5 mm. Therefore, this research opens up another strategy for exploring novel SiOC ceramics to design the good EM wave-absorbing materials with broad absorption bandwidth and thin thickness.  相似文献   

4.
《Ceramics International》2022,48(16):23172-23181
Good impedance matching is vital in upgrading the performance of electromagnetic (EM) wave-absorbing materials. In this study, Si3N4/SiO2/SiC–Y2Si2O7 composite ceramics were synthesized by sintering and chemical vapor infiltration (CVI) technology with gradual impedance matching. The relationship between the microstructure of the as-prepared composite ceramics and EM wave absorption characteristics was thoroughly explored. It was found that the amorphous Si3N4, SiO2, and SiC layers were constructed with a gradual impedance matching structure, which not only improved impedance matching but also increased the number of nano interfaces. More importantly, SiC nanocrystals effectively increased the conduction loss, and the presence of defects and nanoscale heterogeneous interfaces further increased the polarization loss. Consequently, the as-prepared composite ceramics displayed enhanced EM wave absorption properties, with a minimum reflection coefficient (RCmin) value of less than ?20 dB over a temperature range of 25 °C (RT)-300 °C, and an effective absorption bandwidth (EAB) maintained at 4.2 GHz with the thickness range of 3.75–4.75 mm. These results demonstrated the practical significance of high-performance EM wave absorption materials that can be applied in high-temperature and water vapor environments.  相似文献   

5.
《Ceramics International》2022,48(17):24915-24924
Rare earth elements can modulate the dielectric constant of materials and significantly improve their dielectric properties. Herein, SiCnws/SiC ceramics were prepared through polymer derived ceramics (PDCs) technology with rare earth Sc particles as the catalyst. The Sc particles promote the precipitation of SiC and C from the matrix. Furthermore, the SiCnws, grown via the vapour-liquid-solid (VLS) mechanism, construct the three dimensional (3D) network structure to improve impedance matching and loss characteristics. Remarkably, the SiCnws/SiC ceramics minimum reflection coefficient (RCmin) achieved a value of ?33.2 dB at 9.4 GHz with a thickness of 2.75 mm, and the effective absorption bandwidth (EAB) was 4.2 GHz covering the whole X band. When microwaves permeated into the SiCnws/SiC ceramics, those trapped in the 3D network structure underwent a variety of microwave energy dissipation processes, including multiple reflections, scattering, and interface and dipole polarisation. Consequently, SiCnws-reinforced PDC-SiC ceramics catalysed by rare earth emerge as a promising new approach to enhance electromagnetic (EM) wave absorption performance.  相似文献   

6.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   

7.
《Ceramics International》2023,49(15):25051-25062
SiCN(Fe) ceramics with excellent electromagnetic wave (EMW) absorption performance were successfully prepared from a preceramic polymer doped with ferrocene. Additive manufacturing (Digital Light Processing), providing enhanced structural design ability, was employed to fabricate samples with complex architectures. During pyrolysis, ferrocene catalyzed the in-situ formation of a large amount of turbostratic carbon, graphite and SiC nanosized phases, which formed carrier channels in the electromagnetic field and increased the conductivity loss. Meanwhile, it also increased the dipole polarization, interface polarization and the dielectric properties of the material, which finally enhanced the EMW absorption capacity of SiCN(Fe) ceramics. When containing 0.5 wt% ferrocene, the material showed good performance with EAB 4.57 GHz at 1.30 mm, and RLmin −61.34 dB at 2.22 mm. The RLmin of 3D-SiCN-0.5 ceramics was −6 dB, and the RL of the X-band was lower than −4 dB at 2 mm.  相似文献   

8.
The SiCN(Fe) fibers with excellent one-dimensional microstructure and electromagnetic wave (EMW) absorption performance were synthesized by combining polymer-derived ceramics (PDCs) method and electrospinning. The in-situ generation of Fe3Si and CNTs by adding ferric acetylacetonate (FA) into the raw materials effectively improved the dielectric properties, magnetic properties and the impedance matching performance of the SiCN(Fe) fibers. The EMW absorption performance of SiCN(Fe) fibers were mainly based on dipole polarization loss, interface polarization loss and eddy current loss. The RLmin value of SiCN(Fe) fibers reached ?47.64 dB at 1.38 mm and the effective absorption band (EAB, RL ≤ ?10 dB) reached 4.28 GHz (13.72–18 GHz, 1.35 mm).  相似文献   

9.
《Ceramics International》2022,48(14):20168-20175
To improve the electromagnetic (EM) wave absorption performance of rare earth silicate in harsh environments, this work synthesized dense SiC–Y2Si2O7 composite ceramics with excellent EM wave absorption properties by using the polymer permeation pyrolysis (PIP) process, which introduced carbon and SiC into a porous Y2Si2O7 matrix to form novel composite ceramics. SiC–Y2Si2O7 composite ceramics with different numbers of PIP cycles were tested and analysed. The results show that the as-prepared composites exhibit different microstructures, porosities, dielectric properties and EM wave absorption properties. On the whole, the SiC–Y2Si2O7 composite ceramics (with a SiC/C content of 29.88 wt%) show superior microwave absorption properties. The minimum reflection loss (RLmin) reaches ?16.1 dB when the thickness is 3.9 mm at 9.8 GHz. Moreover, the effective absorption bandwidth (EAB) included a broad frequency from 8.2 GHz to 12.4 GHz as the absorbent thickness varied from 3.15 mm to 4.6 mm. In addition, the EM wave absorption mechanism was analysed profoundly, which ascribed to the multiple mediums of nanocrystalline, amorphous phases and turbostratic carbon distributed in the Y2Si2O7 matrix. Therefore, SiC–Y2Si2O7 composite ceramics with high-efficiency EM wave absorption performance promise to be a novel wave absorbing material for applications in harsh environments.  相似文献   

10.
《Ceramics International》2022,48(20):30206-30217
The SiCN/Fe/Ni ceramics codoped with iron acetylacetonate (FA) and nickle acetylacetonate (NA) was synthesized by polymer-derived ceramics (PDCs) method in this study. The microstructure, phase composition and electromagnetic wave (EMW) absorption properties of the samples were analyzed. The polarization loss and conduction loss of materials were analyzed by the direct current (DC) multimeter and the contribution rate of polarization loss was more than 94% in the whole frequency band. The results showed that C, SiC, Fe2Si, Ni3Si, γ- (Fe, Ni) and CNTs were formed after pyrolysis which provided lots of heterogeneous interface and enhanced the interfacial polarization. Meanwhile, Ni could enter the lattice of Fe and formed a unique electronic configuration, which reinforced the conductivity and stability of Fe. In addition, the in-situ generated Fe2Si and Ni3Si provided magnetic loss and conduction loss. The RLmin value of SiCN/Fe/Ni-3 ceramic was ?52.06 dB at 1.54 mm and the effective absorption band (EAB, RL ≤ ?10 dB) reached 4.21 GHz (13.79–18 GHz, 1.43 mm).  相似文献   

11.
《Ceramics International》2020,46(6):7719-7732
In this account, RGO-SiCnw/SiBCN composite ceramics were fabricated using polymer derived ceramic (PDC) combined with chemical vapor infiltration (CVI) technology. Dielectric property of as-obtained RGO-SiCnw/SiBCN composite ceramics was significantly enhanced thanks to established conductive pathway through overlapped nanoscale SiCnw and micro-sized RGO. The minimum RC of composite ceramics with 0.5 wt% GO and 2.29 wt% SiCnw at thickness of 3.6 mm reached -42.02 dB with corresponding effective absorption bandwidth (EAB) of 4.2 GHz. As temperature rose from 25 to 400 °C, permittivity increased with enhanced charge carrier density and then it decreased due to oxidation process of RGO from 400 to 600 °C. The minimum reflection coefficient (RC) was recorded as -39.13 dB and EAB covered the entire X-band at 600 °C. EMW absorption ability was evaluated after high-temperature oxidation experiment under protective effect of wave-transparent Si3N4 coating. RGO-SiCnw/SiBCN composite ceramics maintained outstanding EMW absorption ability with minimum RC of -10.41 dB after oxidation at 900 °C, indicating RGO-SiCnw/SiBCN composite ceramics with excellent EMW absorption characteristic even at high temperatures and harsh environments.  相似文献   

12.
《Ceramics International》2020,46(6):7823-7832
Iron-containing siliconboron carbonitride (SiBCN) ceramics with multiple heterogeneous interfaces were fabricated using the microstructural design and polymer-derived ceramics (PDC) approach. The characterization results revealed the in-situ generation of nanocrystals, including graphite, belt-like silicon nitride (Si3N4), and silicon carbide (SiC) whiskers, in amorphous SiBCN matrix after annealing. At the same time, these dielectric lossy phases successfully constructed multiple heterogeneous interfaces and three-dimensional network structures. Consequently, the conductivity of the ceramics increased from 4.49 × 10−9 (annealed at 800 °C) to 0.67 × 10−4 S cm−1 (annealed at 1600 °C). The real part of permittivity improved from 4.57–3.36 (annealed at 800 °C) to 10.90–8.38 (annealed at 1600 °C) in the frequency range of 2–18 GHz. The formation of multiple heterogeneous interfaces caused interfacial polarization and increased the multiple relaxations, which ultimately led to a superior microwave absorption property with a minimum reflection loss (RLmin) of −34.28 dB and an effective absorption bandwidth (EAB) of 3.76 GHz (8.64–12.4 GHz).  相似文献   

13.
《Ceramics International》2022,48(3):3037-3050
Electromagnetic wave (EMW) absorbing materials have excellent potential for various applications in civil engineering and the military. In this study, siliconboron carbonitride (SiBCN) ceramics with excellent EMW absorption capability and oxidation resistance were obtained by adjusting the boron content. The results revealed that the graphite crystallite size in the SiBCN ceramics increased from 3.42 to 3.78 nm, whereas the thickness of the oxide layer decreased from 16.6 to 8.2 μm. The highest electrical conductivity and permittivity for the SiBCN ceramics were obtained when the boron content was 5%. The minimum reflection loss was ?35.25 dB at 10.57 GHz and a ceramic thickness of 2.0 mm. At a temperature of 600 °C, the SiBCN ceramic exhibited excellent EMW attenuation ability; particularly, the minimum reflection loss reached ?29.18 dB at 9.65 GHz and a ceramic thickness of 2.5 mm. The superior EMW absorption properties of the SiBCN ceramics at high temperatures can be ascribed to the synergistic effect of relaxation and conductivity. The results suggest that boron could enhance the transformation of amorphous carbon into crystalline graphite and increase the number of heterointerfaces and conductive paths. This work provides a method for obtaining SiBCN ceramics with excellent EMW absorption properties.  相似文献   

14.
《Ceramics International》2023,49(4):6368-6377
Nonmagnetic ceramics are ideal microwave absorbing materials used in high-temperature and oxidizing environments. However, low-frequency absorbing properties of this material are rarely reported because low-frequency absorbing requires nonmagnetic materials to have much higher permittivity. In this research, a series of three-dimensional architectures formed by SiC nanowires with different microstructures felt were fabricated to address this issue. The morphology of the SiCnw (linear, bamboo-shaped, and worm-like) dominated by the VLS growth mechanism can be manipulated by the silicon vapor concentration, which is governed by the vaporization temperature of the mixed silicon source (Si and SiO2) in different sintering processes. The spontaneously overlapped bamboo-shaped SiC nanowires in these felt enhance the permittivity and conductivity loss and produce multiple scattering effects on the incident EM waves, thus increasing the low-frequency wave absorption ability. The RLmin of the bamboo-shaped SiCnw felt reaches ?44.3 dB at 3.85 GHz with the corresponding EAB of 0.64 GHz (3.6–4.24 GHz) at a thickness of 3.5 mm. The density of the SiCnw felt is as low as 0.022 g/cm3 due to the high porosity (99.3%) of 3D networks, which fulfills lightweight requirements and highly efficient electromagnetic wave absorption.  相似文献   

15.
Doping transition metal elements in a crystal causes distortion and defects in the lattice structure, which change the electronic structure and magnetic moment, thereby adjusting the electrical conductivity and electromagnetic properties of the material. Fe-doped Sc2Si2O7 ceramics were synthesized using the sol-gel method for application to microwave absorption. The effect of Fe-doped content on the electromagnetic (EM) and microwave absorption properties was investigated in the Ku-band (12.4–18 GHz). As expected, the dielectric and magnetic properties improve substantially with increasing Fe content. Fe doping causes defects and impurity levels, which enhance polarization loss and conductance loss, respectively. Fe replaces Sc atoms in the ScO6 octahedral structure, creating a difference in spin magnetic moments, which increases the magnetic moment. Moreover, the magnetic coupling of Fe and O atoms occurs at the Fermi level, which benefits magnetic loss. In particular, when the Fe content is 6%, the fabricated Fe-doped Sc2Si2O7 ceramics show an absorption property with absorption peaks located at 14.5 GHz and a minimum reflection loss (RLmin) of ?12.8 dB. Therefore, Fe-doped Sc2Si2O7 ceramics with anti-oxidation and good microwave absorption performance have a greater potential for application in high-temperature and water-vapor environments.  相似文献   

16.
《Ceramics International》2021,47(19):27002-27011
Based on the abundant and low-cost zinc-based acrylate resins, C/ZnO composites were fabricated via one-step carbonization at 700 °C in a N2 atmosphere for 2 h. Zinc-based acrylate resins, which were synthesized by free-radical polymerization of butyl acrylate (BA), acrylic acid (AA) and vinyl acetate (VAc) and dehydration condensation of Zn(OH)2, provided a common source for carbon and ZnO. These materials demonstrate enhanced electromagnetic wave absorption (EMWA) behavior with tunable microwave absorption bands at 2–18 GHz, which is related to the molar ratio (mol%) of Zn(OH)2 to acrylate monomers in zinc-based acrylate resins. Remarkably, the 0.11 mol% C/ZnO composite exhibits outstanding absorption properties: the minimum reflection loss (RLmin) at 16.7 wt% loading of −34.66 dB is observed at 3.0 mm and 10.32 GHz, and an RLmin of −24.83 dB is observed at a small thickness of 1.5 mm with an effective absorption bandwidth (EAB) of 3.61 GHz. Moreover, the EAB (RL ≤ −10 dB) from the C band to Ku band is achieved by simply adjusting the thickness of the absorbers, which are superior to the other hybrids of organic carbon and ZnO. These results provide a new strategy for the preparation of carbon-based composites containing metal oxides and their application in high-performance microwave absorption.  相似文献   

17.
The electromagnetic (EM) wave absorbing properties of Cr2AlB2 powders and those after high-temperature oxidation were investigated. Coupling of magnetic and dielectric loss enables Cr2AlB2 with good absorption properties. The minimum reflection loss (RL) value is −44.9 dB at 8.5 GHz with a thickness of 2.7 mm, and the optimized effective absorption bandwidth (EAB) is 4.4 GHz (13.0-17.4 GHz) with a thickness of 1.6 mm. After oxidation at 750, 900, and 1000°C for 2 h, the minimum RL values, respectively, are −23.9 dB (17.5 GHz, 1.5 mm), −41.4 dB (16.5 GHz, 1.5 mm), and −39.5 dB (8.0 GHz, 3.0 mm); and the corresponding EAB values, respectively, are 3.8 GHz (13.6-17.4 GHz, 1.7 mm), 4.1 GHz (13.5-17.6 GHz, 1.6 mm), and 4.4 GHz (13.0-17.4 GHz, 1.7 mm). With an absorber thickness of 1.5-4.0 mm, the EAB with a RL value of less than −10 dB can be tuned in a broad-frequency range 5.0-18.0 GHz, which basically covers C (4-8 GHz), X (8-12 GHz), and Ku (12-18 GHz) bands. These results demonstrate that Cr2AlB2, as a high-efficient and oxidation-resistant absorber, is a promising candidate for microwave absorption applications and can retain good EM wave absorbing properties after high-temperature oxidation.  相似文献   

18.
Integrating multiple functions such as high electromagnetic (EM) wave absorption, thermal insulation, and resilience into one material is critical, especially for applications in harsh environment. SiC ceramic has received considerable attention as high-temperature wave absorber, but its applications are limited by common wave absorption performance and brittleness of ceramics. Here by incorporating SiO2 with SiC in a unique three-dimensional network structure, SiOC/SiC foam consisting of abundant SiOC thin flakes interconnected by numerous long interweaving SiC nanowires have been prepared. The foam shows high EM wave absorption with minimum reflection loss of −30.23 dB, broad effective absorption bandwidth of 5.4 GHz, and a nearly complete compressive resilience from 10% strain. Besides, the foam displays high-temperature resistance up to 1400°C in air and good thermal insulation performance. Such multifunctional material is promising for applications in advanced aerospace industry under extreme conditions.  相似文献   

19.
SiC nanoparticles with different contents (5–20 wt%) were mixed with liquid polyborosilazane. The compound was used to prepare SiC nanoparticle/polymer-derived SiBCN ceramics (SiC/PDCs-SiBCN). Thermal gravity tests (25–1400 °C) in air and helium atmosphere were used to investigate the thermal stability of SiC/PDCs-SiBCN. Dielectric and microwave-absorption properties of SiC/PDCs-SiBCN were determined at frequencies of 8.2–12.4 GHz by waveguide method. Results show that the addition of SiC nanoparticles increased the thermal stability of SiBCN ceramics. The permittivity, dielectric loss and absorption coefficient of ceramics increased as an elevated SiC content, resulting from the increase of carrier concentration. To understand the high-temperature dielectric property of SiC/PDCs-SiBCN, the permittivity of SiBCN ceramics with 15 wt% of SiC was measured at temperatures of 293–773 K. The composite ceramics were found to have a visible increase in the permittivity and dielectric loss, indicating their great potential as the high-temperature microwave absorption materials.  相似文献   

20.
《Ceramics International》2020,46(14):22474-22481
To realize the broad-bandwidth and high-efficiency absorption characteristics, a novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 porous ceramic was successfully fabricated by method of precursor infiltration pyrolysis (PIP). Polycarbosilane (PCS) and ferrocene (Fe(C5H5)2) were used as the precursor and catalyst to incorporate SiC nanowires into the SiO2/3Al2O3·2SiO2 porous ceramic. The curvy SiC nanowires formed three-dimensional (3D) networks with a proper nanometer heterostructure, thereby consuming the microwave energies. The influence of SiC nanowires contents on the microwave absorption properties was investigated. The results indicate that the SiC nanowires contents can be tuned by controlling the PIP cycles, thereby modifying the dielectric properties of as-prepared composite ceramics. The dielectric and electromagnetic wave absorption performances are gradually enhanced with an increasing of SiC nanowires contents. The SiC nanowires reinforced SiO2/3Al2O3·2SiO2 composite ceramic exhibits excellent electromagnetic wave absorption abilities when the SiC nanowires content is 23.9% (PIP5). The minimum reflection coefficient (RCmin) of the composite ceramic is −30 dB at 10.0 GHz, corresponding to more than 99.9% of the electromagnetic wave consumption. The effective absorption bandwidth (EAB) can cover the frequency ranges of 8.2–12.4 GHz (the entire X-band) at the thickness of 5.0 mm. In general, the novel SiC nanowires reinforced SiO2/3Al2O3·2SiO2 composite ceramic can be considered as a promising electromagnetic wave absorbing material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号