首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examined the cognitive performance of subtropically acclimatized subjects at an extreme high indoor temperature and the effect of decreased humidity on the cognitive performance at the high temperature. Forty-eight healthy subjects experienced the three exposure conditions: 26°C/relative humidity (RH) 70%, 39°C/RH50%, and 39°C/RH70% in a climate chamber. During 140-minute-long exposures to each thermal condition, they were required to perform cognitive tests that assess the perception, spatial orientation, concentration, memory, and thinking abilities. Meanwhile, their heart rate, core temperature, skin temperature, blood pressure, and body weight were measured and subjective responses, that is, thermal comfort, perceived air quality, and acute health symptoms were investigated. At the relative humidity of 70%, increasing indoor temperature from 26°C to 39°C caused a significant decrease in the accuracy of these cognitive tests. However, when the relative humidity decreased from 70% to 50% at 39°C, the accuracy of the cognitive tests increased significantly. Accordingly, the physiological and subjective responses of the subjects changed significantly with the changes in indoor temperature and humidity, which provided a basis to the variation in the cognitive performance. These results indicated that decreasing indoor humidity at extreme high temperature could improve the impaired cognitive performance.  相似文献   

2.
The effect of personalized ventilation (PV) on people's health, comfort, and performance in a warm and humid environment (26 and 28°C at 70% relative humidity) was studied and compared with their responses in a comfortable environment (23°C and 40% relative humidity). Thirty subjects participated in five 4‐h experiments in a climate chamber. Under the conditions with PV, the subjects were able to control the rate and direction of the supplied personalized flow of clean air. Subjective responses were collected through questionnaires. During all exposures, the subjects were occupied with tasks used to assess their performance. Objective measures of tear film stability, concentration of stress biomarkers in saliva, and eye blinking rate were taken. Using PV significantly improved the perceived air quality (PAQ) and thermal sensation and decreased the intensity of Sick Building Syndrome (SBS) symptoms to those prevailing in a comfortable room environment without PV. Self‐estimated and objectively measured performance was improved. Increasing the temperature and relative humidity, but not the use of PV, significantly decreased tear film quality and the concentration of salivary alpha‐amylase, indicating lower mental arousal and alertness. The use of PV improved tear film stability as compared to that in a warm environment without PV.  相似文献   

3.
Thermal comfort, self‐reported acute health symptoms, cognitive performance, and physiological reactions were examined at four temperatures (26, 30, 33, and 37°C) at a relative humidity of 70%. Thirty‐two sub‐tropically acclimatized subjects experienced each condition for 175 minute, in balanced order, in a climatic chamber. The perception of heat gradually increased with increasing temperature, but the subjects felt hot only at 37°C. The temperature of 33°C was on average rated as acceptable and only just uncomfortable. The acceptability of air quality decreased linearly with increasing temperature. The intensity of acute health symptoms reported by the subjects increased with increasing temperature, but it was no more than moderate even at the highest temperature; dryness of skin and eye were alleviated. The eardrum temperature, skin temperature and moisture, heart rate, end‐tidal carbon dioxide, and weight loss increased significantly with increasing temperature, whereas the percentage of adjacent heart inter‐beat intervals differing by >50 ms decreased significantly. These results suggest that the perceived heat, self‐reported symptoms, and physiological reactions occurred concurrently. They show additionally that acclimatization to heat may shift the boundary of thermal discomfort to a higher temperature. The role of psychological adaptation and of the contextual aspects of this process still requires clarification in future experiments.  相似文献   

4.
Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity were studied in a normally furnished office space (108 m3) ventilated with an outdoor airflow of 3, 10 or 30 L/s per person, corresponding to an air change rate of 0.6, 2 or 6 h-1. The temperature of 22 degrees C, the relative humidity of 40% and all other environmental parameters remained unchanged. Five groups of six female subjects were each exposed to the three ventilation rates, one group and one ventilation rate at a time. Each exposure lasted 4.6 h and took place in the afternoon. Subjects were unaware of the intervention and remained thermally neutral by adjusting their clothing. They assessed perceived air quality and SBS symptoms at intervals, and performed simulated normal office work. Increasing ventilation decreased the percentage of subjects dissatisfied with the air quality (P < 0.002) and the intensity of odour (P < 0.02), and increased the perceived freshness of air (P < 0.05). It also decreased the sensation of dryness of mouth and throat (P < 0.0006), eased difficulty in thinking clearly (P < 0.001) and made subjects feel generally better (P < 0.0001). The performance of four simulated office tasks improved monotonically with increasing ventilation rates, and the effect reached formal significance in the case of text-typing (P < 0.03). For each two-fold increase in ventilation rate, performance improved on average by 1.7%. This study shows the benefits for health, comfort and productivity of ventilation at rates well above the minimum levels prescribed in existing standards and guidelines. It confirms the results of a previous study in the same office when the indoor air quality was improved by decreasing the pollution load while the ventilation remained unchanged.  相似文献   

5.
The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 °C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 °C and relative humidity of 70%.  相似文献   

6.
《Energy and Buildings》2002,34(10):1045-1054
The objective of this work is to evaluate the possibility of ensuring indoor temperature and relative humidity in an acceptable range by controlling heating and ventilation associated with minimising the energy consumption or cost by the use of a numerical simulation program. An acceptable indoor range means that indoor temperature is 20 °C with small fluctuation and relative humidity is in the range of 20–70%. A simple heating and ventilation control regulation is proposed. Simulation examples are conducted for different types of buildings based on energy consumption or cost factor. Simulations demonstrate that the indoor condition is much more improved and significant energy consumption or cost can be reduced by using the control regulation developed in this paper.  相似文献   

7.
Abstract Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18–28°C and 30-70% relative humidity (RH). The acceptability of the air quality immediately after entering a chamber and during the following 20-min whole-body exposure was assessed by 36 untrained subjects who maintained thermal neutrality by modifying their clothing. The results confirm the significant decrement of the acceptability with increasing temperature and humidity, as shown in a previous study with facial exposures. The odour intensity was found to be independent of temperature and humidity. A linear relation between acceptability and enthalpy of air was again observed by this experiment. No significant difference was observed between the immediate acceptability and the acceptability during the following 20-min exposure, i.e., no adaptation took place. Both the immediate assessment of acceptability and the assessments during the 20-min exposure were independent of the air temperature and humidity to which the subjects were exposed before entering the chamber. The results further indicate that a notable decrement of the ventilation requirement may be achieved by maintaining a moderate enthalpy of air in spaces.  相似文献   

8.
《Building and Environment》2004,39(2):153-164
This research aims to clarify the effects and indoor environmental characteristics of natural and mechanical hybrid air-conditioning systems in office buildings during intermediate seasons and to obtain design data. Natural and mechanical hybrid air conditioning is an air-conditioning system that utilizes natural ventilation and mechanical air-conditioning systems to improve the quality of the indoor thermal and air environment, and to reduce energy consumption. This report first categorizes the available natural ventilation conditions and estimates the amount of natural ventilation available in a model building. Furthermore, based on the concept of task-ambient air conditioning, after controlling the average temperature in the task zone to a target air conditioning temperature (26°C), changes in the outdoor temperature/humidity and the inflow rate, and the indoor environment and amount of cool heat input were studied with changes in the size of the natural vent using three-dimensional Computational Fluid Dynamics (CFD) analysis. The results of these studies indicated that natural ventilation at temperatures lower than the indoor temperature effectively covered the lower indoor task zone through negative buoyancy, which enabled energy-saving air conditioning in the task zone.  相似文献   

9.
The effects of mechanical ventilation on the sick building syndrome (SBS) were studied in an office building with 2150 employees, where the mechanical ventilation and indoor air quality were commonly blamed for causing symptoms typical of the SBS (nasal, eye, and mucous membrane symptoms, lethargy, skin symptoms and headache). The mechanical ventilation rates in the building were high (mean 26 l/s/person). To test the hypothesis that mechanical ventilation causes the SBS, a controlled experimental study was carried out by shutting off the ventilation in one part of the building and reducing the ventilation rate by 75% and 60% in two areas while leaving one part unaltered as a control. The experimental reduction of the ventilation rate did not alleviate the symptoms. On the contrary, the reduction of the ventilation rate caused a slight but statistically significant relative increase in symptoms (p < 0.05). In the cross-sectional analysis of the baseline data the SBS symptoms did not associate significantly with the ventilation rate (range 7–70 l/s/person). In the linear regression model, a positive correlation was found between temperatures above 22°C and the occurrence of symptoms (p < 0.05). Subjects exposed to environmental tobacco smoke had more symptoms than those not exposed (p < 0.01). Women reported more symptoms than men (p < 0.001). In addition, any prior history of allergic diseases (p < 0.001) and a negative attitude towards the social atmosphere at work (p < 0.001) were significant determinants of the SBS.  相似文献   

10.
湿热湿冷地区夏季室外空气相对湿度大,太阳辐射强度偏低,现有建筑的房屋热稳定性状况缺少基础性研究数据。本文选取该地区典型的居住建筑,对其夏季太阳辐射、室内外空气相对湿度、室内外空气温度和壁面温度等进行了现场测试。分析表明在该气候特征下,所测试居住建筑在夏季典型周期内的室内空气平均温度波幅为4.3℃,幅度较大且受朝向、围护结构构造做法等因素影响明显。  相似文献   

11.
A liquid desiccant based dedicated outdoor air-chilled ceiling (DOAS-CC) system is proposed to serve a multi-zone space. The outdoor airflow rate and the supply air humidity ratio are two crucial variables in such a system, which significantly influence indoor thermal comfort, indoor air quality and energy consumption. Two strategies are presented to optimize these two variables in the study. They are the demand-controlled ventilation (DCV) strategy and the supply air humidity ratio set-point reset strategy. To evaluate the performances of these two strategies, a basic control strategy, i.e., the strategy adopting constant ventilation flow rate and constant supply air humidity ratio, is selected as the benchmark. Performances of the two strategies in terms of indoor air temperature, relative humidity and CO2 concentration as well as energy consumption are analyzed using simulation tests. The results show that the supply air humidity ratio set-point reset strategy is effective for the indoor air humidity control. It can save about 19.4% of total energy consumption during the whole year. The DCV-based ventilation strategy can further reduce about 10.0% of energy consumption.  相似文献   

12.
Ventilation in Scandinavian buildings is commonly performed by means of a constant flow ventilation fan. By using a regulated fan, it is possible to make a seasonal adjustment of outdoor ventilation flow. Energy saving can be achieved by reducing the mechanical ventilation flow during the heating season, when natural ventilation driven by temperature differences between outdoor and indoor is relatively high. This ventilation principle has been called 'seasonally adapted ventilation (SAV)'. The aim was to study if a 25-30% reduction of outdoor ventilation flow during heating season influenced sick building syndrome (SBS) and the perception of the indoor environment. This was done in a 1-year cross-over intervention study in 44 subjects in a multi-family building. During the first heating season (November to April), one part of the building (A) got a reduced flow during the heating season [0.4-0.5 air exchanges per hour (ACH)] while the other part (B) had constant flow (0.5-0.8 ACH). The next heating season, part A got constant flow, while part B got reduced ventilation flow. Reduced ventilation increased the relative air humidity by 1-3% in the living room (mean 30-37% RH), 1-5% in the bathroom (mean 48-58% RH) during heating season. The room temperature increased 0.1-0.3 degrees C (mean 20.7-21.6 degrees C), mean carbon dioxide (CO2) concentration in the bedroom increased from 920 to 980 p.p.m. at reduced flow. The indoor air quality was perceived as poorer at reduced outdoor airflow, both in the bedroom and in the apartment as a whole. There was a significant increase of stuffy odor (P = 0.05) at reduced outdoor airflow and the indoor air quality was perceived as poorer, both in the bedroom (P = 0.03) and in the apartment as a whole (P = 0.04). No significant influence on SBS symptoms or specific perceptions such as odors, draught, temperature, air dryness or stuffy air could be detected. In conclusion, reducing the ventilation flow in dwellings to a level below the current Swedish ventilation standard (0.5 ACH) may cause a perception of impaired air quality. Technical measurements could only demonstrate a minor increase of indoor temperature, relative air humidity, and bedroom CO2 concentration. This illustrates that it is important to combine technical measurements with a longitudinal evaluation of occupant reactions, when evaluating energy-saving measures. PRACTICAL IMPLICATIONS: It is important to combine technical measurements with a longitudinal evaluation of occupant reactions, when evaluating energy-saving measures. Reduction of outdoor airflow in dwellings below the current ventilation standard of 0.5 ACH may lead to a perception of impaired air quality, despite only a minor increase of bedroom CO2-concentration.  相似文献   

13.
A series of ventilation, thermal and indoor air quality measurements were performed in 14 different dairy buildings in Estonia and Finland. The number of animals in the buildings varied from 30 to 600. Measurements were made all year round with ambient temperatures ranging between −40 °C and +30 °C. The results showed that microclimatic conditions in the dairy buildings were affected by the design of the building, outside temperature, wind, ventilation and manure handling method. The average inside air concentration of carbon dioxide was 950 ppm, ammonia 5 ppm, methane 48 ppm, relative humidity 70% and inside air velocity was 0.2 m/s. Although occasionally exceeded, the ventilation and average indoor air quality in the dairy buildings were mainly within the recommended limits.  相似文献   

14.
In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty‐six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant‐controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant‐controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air‐conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates.  相似文献   

15.
The objective of this study was to assess the effect of air humidification and temperature on thermal comfort in sedentary office work. A blinded twelve-period cross-over trial was carried out in two similar wings of an office building, contrasting 28–39% steam humidification with no humidification, corresponding to 12–28% relative humidity. The length of each period was one working week. The study population was 169 workers who judged their thermal sensations in a weekly questionnaire. The percentage of dissatisfied was lowest when the air temperature was 22 °C. At 22 °C an increase in relative humidity raised the mean thermal sensation only slightly. At 20 °C when the air was humidified there were fewer workers who judged their air temperature as being too low. On the other hand, at 24 °C humidification increased the percentage of workers who judged their air temperature to be too high. The percentage of dissatisfied increased rapidly when the air temperature was outside of its optimum value, 22 °C. The percentage of workers complaining about draft increased when the air temperature was lower than 22 °C. Thus we consider that the temperature range from 20 to 24 °C during wintertime may be too wide without individual temperature control from the point vzew of thermal comfort. We recommend that the air temperature should be kept between 21 and 23 °C if no individual control is available. The best solution would be individual temperature control permitting adjustment of the temperature at 22 ± 2 °C.  相似文献   

16.
Jan Pejtersen 《Indoor air》1996,6(4):239-248
Abstract The sensory pollution load and microbial contamination of glass-fibre filters at high and low relative humidity were investigated in an experimental set-up in the laboratory. Dust and particles from the outdoor air were collected in two EU7 glass-fibre filters for a pre-conditioning period of 16–18 weeks during which there was a constant airflow with a velocity of 1.9 m/s through the filters. One of the filters was exposed to outdoor air of approximately 40% relative humidity and 10°C, the other to outdoor air of approximately 80% relative humidity and 5°C. The dust in ventilation filters can constitute a serious pollution source in the indoor environment, causing deterioration in the quality of the supply air even before it enters the ventilated spaces. The sensory pollution load from the used filters after the continuous operating time of 16–18 weeks was significantly higher than the sensory pollution load from new filters but the sensory load at 40% and 80% relative humidity did not differ. The microbial contamination of the supply air downstream of the filters, which on average had been exposed to outdoor air of 40% and 80% relative humidity, was negligible.  相似文献   

17.
The objective of this study was to develop an adaptive thermal comfort equation for naturally ventilated buildings in hot-humid climates. The study employed statistical meta-analysis of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) RP-884 database, which covered several climatic zones. The data were carefully sorted into three climate groups including hot-humid, hot-dry, and moderate and were analyzed separately. The results revealed that the adaptive equations for hot-humid and hot-dry climates were analogous with approximate regression coefficients of 0.6, which were nearly twice those of ASHRAE and European standards 55 and EN15251, respectively. The equation using the daily mean outdoor air temperature had the highest coefficient of determination for hot-humid climate, compared with other mean temperatures that considered acclimatization of previous days. Acceptable comfort ranges showed asymmetry and leaned toward operative temperatures below thermal neutrality for all climates. In the hot-humid climate, a lower comfort limit was not observed for naturally ventilated buildings, and the adaptive equation was influenced by indoor air speed rather than indoor relative humidity. The new equation developed in this study can be applied to tropical climates and hot-humid summer seasons of temperate climates.  相似文献   

18.
Two super-insulated houses were constructed near Sendai City in accordance with the Canadian R-2000 manual (Canadian Home Builders' Assoc., 1987). Shelter performance, thermal environment, air quality and energy consumption of these two houses were investigated for one year. The two super-insulated houses were very airtight compared with other houses. The one-year measurement of room temperature and humidity for one super-insulated house showed that the daily mean temperature for the dining-living room and the master bedroom was 15°C-20°C during the winter and 22°C-28°C during the summer. Absolute humidity for these rooms was less than 5 g/kg (DA) during the winter. The indoor environment of the two super-insulated houses during the heating season was more thermally comfortable, compared with that of ordinary houses in Japan. During the summer, the indoor temperature in these two houses was stable during the day and did not decrease at night even if the outdoor air temperature dropped. The CO2 concentration in these two houses was lower than that of other airtight houses due to continuous mechanical ventilation. The space heating energy consumption for one super-insulated house was less than that of ordinary houses in Tohoku District in which only the living-dining room was heated.  相似文献   

19.
The relative importance of sensory air pollution, thermal load and noise was studied under controlled conditions in two identical environmental chambers. In one chamber subjects were exposed to various levels of either thermal load or poor indoor air quality. For each condition tested in this chamber, the subjects were exposed to a number of noise levels in an adjacent chamber with neutral thermal conditions and good indoor air quality in order to determine a noise level causing the same degree of discomfort. A total of 68 comparisons of the conditions in the two chambers were made by the same group of 16 subjects after one-minute exposure in each chamber. In the operative temperature range of 23–29°C, a 1°C change in operative temperature was found to have the same effect on human comfort as a change in perceived air quality of 2.4 decipol or a change in noise level of 3.9 dB. For levels of perceived air quality up to 10 decipol, a 1 -decipol change in perceived air quality had the same effect on human comfort as a change in noise level of 1.2 dB. A relationship between traffic noise level and percentage dissatisfied was established  相似文献   

20.
对昆明市200户住宅夏季室内热环境参数进行了实测,并进行了现场问卷调查。分析了室内温度、相对湿度、风速、人员服装热阻的分布频率,统计得出了昆明地区住宅夏季室内热环境及人体热舒适的基本情况,并分析了室内热环境改善措施。调查发现,昆明市居民夏季普遍通过开窗进行自然通风以降低室内温度,在非空调条件下约有90%的居民的热感觉在舒适范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号