首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Si-O-C ceramics were prepared by polymer-derived ceramic method using polysiloxane/FeCl3 as precursor with the FeCl3 content of 1.0 wt%. The microstructure, dielectric properties, and electromagnetic wave (EMW) absorbing properties in X band of the Si-O-C ceramic were investigated. It was found that the pyrolysis temperature has a great influence on the amount of in-situ formed CNTs and the transformation from CNTs to 1D SiC nanostructures. With the temperature rising from 1000 to 1500°C, the SiC formed with various morphologies including SiC microspheres, needle-like SiC, and SiC nanowires which were transformed from CNTs. The EMW absorbing properties were dramatically improved when the pyrolysis temperature raised to 1500°C; the minimum reflection loss (RL) was −58.37 dB of sample with a thickness of 2.95 mm at 10.11 GHz, and the absorbing band (RL ≤−20 dB) of sample at a thickness of 3.0 mm covers 3.8 GHz (8.2-12.0 GHz), which means more than 99% of the EMW were absorbed. The enhancement of EMW absorbing properties of bulk Si-O-C ceramics was attributed to the interfacial polarization induced by in-situ heterogeneous nanostructures with complex interfaces.  相似文献   

2.
For the first time, the present work reports the dielectric properties and electromagnetic wave (EMW) absorbing performance of polymer-derived carbon-rich NbC-SiC-C nanocomposites. In our previous work, NbC-SiC-C nanocomposites with the ultra-high temperature ceramic phase NbC as the main phase were synthesized with the allylhydridopolycarbosilane (AHPCS) and niobium pentachloride (NbCl5) as starting materials. On this basis, divinyl benzene was chosen as carbon-rich source and introduced into the AHPCS and NbCl5 to form a single-source-precursor. Finally, carbon-rich NbC-SiC-C nanocomposites were successfully synthesized by polymer-derived ceramic approach. Compared with ceramic samples without Nb and with lower carbon content, the carbon-rich NbC-SiC-C nanocomposites show extremely enhanced EMW absorbing performance with minimum reflection coefficient of −51.1 dB at 6.88 GHz for the thickness of 2.27 mm. As a consequence, the resultant carbon-rich NbC-SiC-C nanocomposite has to be considered as structure&function integrated material with excellent EMW absorption performance, which can be applied in hostile environment.  相似文献   

3.
The effects of SrTiO3 content on the electromagnetic properties and electromagnetic wave‐absorbing characteristics of SrTiO3–epoxy composites were investigated. Also, the frequency dispersion behavior of the complex permittivity of composites was demonstrated. The complex permittivity and permeability were measured using a network analyzer in the frequency range of 130 MHz to 10 GHz. As the SrTiO3 content increased, it was found that the complex permittivity and permeability of the composites increased and the resonance frequency moved toward low frequency range. The logarithmic model coincided with the effective permittivity of composite as a function of SrTiO3 content comparatively well. The resonance frequency of composites was found to show good agreement with the theoretical values calculated by the equation proposed in this article. The electromagnetic wave‐absorbing behavior showed that the center frequency of attenuation curve was shifted to a lower frequency band with increasing the amount of SrTiO3 and the thickness of composite. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 75–83, 1999  相似文献   

4.
The thermal stability and decomposition mechanisms of Fe2AlB2 powders, synthesized by reactive powder metallurgy, were studied under nitrogen (N2) or argon (Ar) atmospheres. The effects of using different FeB precursors to synthesize the Fe2AlB2 and hydrochloric acid (HCl) purification treatments on the thermal stability were also investigated. When as-synthesized Fe2AlB2 powders are treated in dilute HCl to dissolve impurity phases, decomposition in N2 atmospheres occurs readily above 1200 K. The decomposition reaction involves β-FeB precipitation and the liberated Al atoms reacting with the ambient N2 to form AlN. Under Ar environments, HCl-treated Fe2AlB2 powders decompose and precipitate β-FeB, by the out-diffusion of Al from the nanolaminated structure. Interestingly, isothermal annealing under N2 atmospheres revealed that Fe2AlB2 was more thermally stable when synthesized from lab-synthesized, instead of commercially available, FeB precursors and when the HCl treatment was avoided. The effects of the various factors on the decomposition temperature and decomposition mechanisms are discussed herein.  相似文献   

5.
High-density Si3N4-SiC ceramic nanocomposites have exceptional mechanical properties, but little is known about their electromagnetic wave absorption (EMA) capabilities. In this paper, the effects of sintering temperature and starting material compositions on the dielectric and EMA properties of hot-pressed Si3N4-SiC ceramic nanocomposites were investigated. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites increase with increasing sintering temperature or SiC content, particularly at the sintering temperature of 1850°C and SiC content of 50 wt.%. This is primarily due to the improvement of interfacial and defect polarizations, which is caused by the doping of nitrogen into the SiC nanocrystals during the solution-precipitation process. The real and imaginary permittivities of Si3N4-SiC ceramic nanocomposites show decreasing trends as sintering aid content increases. Si3N4-SiC ceramic composites have both good EMA and mechanical properties when they are sintered at 1850°C with 30 wt.% SiC and 5–8 wt.% sintering aids. The minimum reflection loss and maximum flexural strength reach -58 dB and 586 MPa, respectively. Materials with multilayered structural designs have both strong and broad EMA properties.  相似文献   

6.
A novel electromagnetic wave (EMW) absorber was prepared by combustion synthesis. Boron carbide (B4C) powders with different grain sizes using a molten-salt-assisted combustion technique with B2O3, CB (carbon black), and Mg powders as starting materials, and NaCl as an additives. The effects of the NaCl content on the phase compositions and the microstructure of the products were characterized. A combustion front quenching method was used to elucidate the mechanism for the B4C powders synthesis. The dielectric, and EMW absorbing properties in the X-band were also investigated. The results showed that the addition of NaCl significantly reduced the grain size of B4C powders. Nanoscale B4C powders with cubic polyhedral structures were synthesized using 6 wt% NaCl (labeled as N-6). According to the quenching test results can be obtained that the first step in the combustion synthesis was melting B2O3 into a glassy substance. At the same time, Mg melted and formed a liquid pool into which the NaCl dissolved, followed reduction of the B2O3 to B. The formed B eventually reacted with CB to form B4C, and the B4C particles precipitated from the matrices. The N-6 sample exhibits optimal dielectric and EMW absorbing properties, because of a high specific surface area that enhances interfacial and space charge polarization.  相似文献   

7.
关晓辉  匡嘉敏  赵会彬  杨柳  李世婷 《化工进展》2015,34(10):3693-3699
基于双膜分散技术与水热法相结合的思想,在较低温度条件下,短时间内合成了还原的氧化石墨烯(rGO)/CoFe2O4纳米复合材料,并研究了rGO/CoFe2O4的吸波性能。通过 XRD、SEM、EDS、TEM、TG/DSC、IR测试手段对rGO/CoFe2O4进行表征,采用矢量网络分析仪测定了复合材料在2~18GHz范围内复介电常数和复磁导率的变化,并利用计算机模拟材料在不同厚度下电磁波的衰减性能。结果表明:在透明绢丝状石墨烯的表面及边缘负载了粒度均匀的纳米CoFe2O4粒子;单一纳米CoFe2O4的反射率损耗为-3.59dB。而mCoFe2O4:mGO为10:7的样品的吸波层厚度在2~3mm之间变化时,微波吸收效果显著增强,厚度为3mm时,出现最大微波衰减值-9.2dB,并且微波吸收峰随着吸波层厚度的增加而向低频移动。相比于单一纳米CoFe2O4粉体,rGO/CoFe2O4纳米复合材料对电磁波的吸收效果有了大幅度的提高。  相似文献   

8.
Polyvinyl pyrrolidone (PVP) polymers were used as non‐covalent modifiers to modify the surface of multi‐walled carbon nanotubes (MWNTs) by ultrasonic dispersion method. The transmission electron microscope results suggest that a layer of polymers is wrapped on the surface of MWNTs, and the thickness is about 2.5 nm. The addition of PVP helps to facilitate uniform distribution of MWNTs and increases the interfacial multipoles formed between PVP and MWNTs, which plays an important role in the regulation of the dielectric parameter and the enhancement of the microwave absorbing properties. The effects of PVP loadings and thickness of PVP/MWNTs hybrids on the dielectric parameter of MWNTs are investigated. The microwave absorbing properties are calculated from the dielectric constants. The results show that the maximum reflection loss is ?26.27 dB at 7.8 GHz while the loading of PVP on MWNTs is 8.0 wt % with a thickness of 3.0 mm. These results suggest that the PVP contents and absorber thickness are important factors for the improvement of dielectric loss and microwave absorption properties of MWNTs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41007.  相似文献   

9.
In this work, porous core-shell structured Co2Si@SiC/C/SiOC/SiO2/Co3O4 nanoparticles were fabricated by a polymer-derived ceramic approach. The in situ formation of mesopores on the shell, microstructural, and phase evolution of resulting nanoparticles were investigated in detail. The obtained nanoparticles-paraffin composites possess a very low minimum reflection coefficient (RCmin) −60.9 dB, broad effective absorption bandwidth 3.50 GHz in the X-band and 15.5 GHz in the whole frequency range (from 2.5 to 18 GHz). The results indicate outstanding electromagnetic wave (EMW) absorbing performance among all the reported cobalt-based nanomaterials, due to the reasons as follows: (a) The unique core-shell structure as well as complex phase composition of SiC/C/SiOC/SiO2/Co3O4 in the shell, result in a large number of heterogeneous interfaces in the nanoparticles; (b) Nanoparticles have both dielectric and magnetic loss; (c) Mesopores in the shell prolong the propagation path of EMW, thereby increasing the absorption/reflection ratio of EMWs. Thanks to the material structure design, the resulting core-shell structured cobalt-containing ceramic nanoparticles have great potential for thin and high-performance EMW absorbing materials applied in harsh environment.  相似文献   

10.
Siliconboron carbonitride ceramics (SiBCN) were introduced into porous Si3N4 substrates via low pressure chemical vapor deposition and infiltration from SiCl3CH3-NH3-BCl3-H2-Ar system. To improve the electromagnetic wave(EMW) absorbing properties, the molar ratio, nCH3SiCl3/(nNH3 + nBCl3), was increased based on thermodynamics analysis. The results show that nanosized silicon carbide crystals and free carbon dispersed uniformly in the amorphous SiBCN phase, resulting in suitable dielectric properties and improved absorption capabilities of SiBCN-Si3N4 ceramics. Additionally, with increasing SiBCN ceramics loading, the amount of nanocrystals and interface between nanocrystals and amorphous SiBCN phase increased, leading to enhanced polarization and dielectric loss of the composite ceramics. When SiBCN content was up to 3.64 wt%, the electromagnetic reflection coefficient (RC) of SiBCN-Si3N4 composite ceramics reached ?40 dB (>99.97% absorbing) with the effective electromagnetic absorbing bandwidth of 3.64 GHz in the X-band. This study makes it possible to fabricate SiBCN-based composite materials with excellent EMW absorbing properties at a low temperature.  相似文献   

11.
TiN-based cermets with different Cr3C2 addition were prepared by conventional vacuum sintering. Effect of Cr3C2 on microstructure and properties of TiN-based cermets were discussed. Owing to the formation of sound rims on TiN cores, ultrafine TiN-based cermets with more uniform microstructure and finer grains were obtained with 1 wt% Cr3C2. When the added Cr3C2 content enhanced from 0 to 2 wt%, the transverse rupture strength (TRS) and fracture toughness increased firstly and then decreased, while the hardness increased monotonically. For the experimental conditions considered, the cermet with 1 wt% Cr3C2 addition had optimal combination of hardness (91HRA), fracture toughness (14.7 MPa m1/2) and TRS (2123 MPa).  相似文献   

12.
Polyvinyl chloride‐ (PVC)‐ based nanocomposites, containing graphite nanosheets (G), which may be used as electromagnetic wave absorbers was developed and investigated. The microstructure of polyvinyl chloride/graphite nanocomposites (PVC/G) were examined by means of X ‐ray diffraction, scanning electron microscopy (SEM), and thermal gravimetric analyses (TGA). SEM image reveals that the graphite nanosheets were well dispersed in the PVC matrix without agglomeration. Thermal stability of the PVC/G nanocomposites is improved as a result of inclusion of graphite nanosheets. The PVC/G nanocomposites were characterized to investigate the effect of dispersion of graphite nanosheets in PVC matrix. The dielectric spectroscopy of PVC/G nanocomposites in frequency range from 1 to 12 GHz has been performed. The results show that PVC/G nanocomposites exhibit high dielectric constant at the measured frequencies. Coefficient of attenuation and coefficient of reflection of PVC/G composites have been also examined in a frequency range from 1 to 12 GHz. The electromagnetic interference shielding effectiveness (EMI) depends on graphite volume fraction in the composite. The results show that the PVC/G represents a new class of conducting lightweight nanomaterial that can absorb electromagnetic waves at microwave frequency and may be promising for future commercial use. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Porous silicon oxynitride (Si2N2O) ceramics were prepared by gas pressure sintering at 1650°C for 2 hour under 1.5 MPa N2 in two different powder beds, that is, h‐BN/Si3N4 or h‐BN/(Si3N4 + SiO2). Effects of the gaseous atmosphere in the powder bed and the pore diameter in the ceramics on formation of the Si2N2O phase and the oxidation resistance of the sintered porous ceramics were investigated. Results showed that presence of the gaseous SiO in the powder bed played a crucial role in suppressing decomposition of the Si2N2O phase at the outer surface of the material. Permeability of the gaseous substances was decreased when the pore diameter was small, to affect the phase composition and the oxidation behavior of the porous Si2N2O ceramics. The oxidation weight gain curves of the porous Si2N2O ceramics fitted the asymptotic law. No significant changes in the dielectric constant of the Si2N2O ceramics were observed after oxidation at 1000°C‐1200°C for up to 30 minutes, whereas the dielectric loss tangent was reduced by oxidation due to formation of SiO2. The as‐obtained porous Si2N2O ceramics could withstand a highest thermal shock of 1200°C when the outer surface could be sealed by the oxidation‐derived SiO2 layer.  相似文献   

14.
Through the magnetic/thermal transport measurements combined with the analyses of magnetocaloric effect and critical behavior of Co3Sn2S2 single crystal, the main results we obtained are as follows: in the case of the magnetic field H//c-axis, Co3Sn2S2 exhibits the phase-separation state below Tc in the low-field region (H < 500 Oe). Tc increases slightly from 174 to 177 K with an increase in H from 100 to 10 kOe. The second-order magnetic phase transition near Tc and the itinerant ferromagnetism below Tc are identified. The magnetization below Tc matches well with the three-dimensional Ising model, instead of the mean-field model. In the case of H//ab, Tc changes between 175 and 178 K with varying H. Noticeably, M above Tc exhibits a small positive value, instead of the null M as commonly expected in the paramagnetic region. An extra phase transition below 166 K is observed. The magnetic transition near Tc seems not to be the second-order phase transition. All results show a significant characteristic of anisotropic magnetic phase transition for the Co3Sn2S2 single crystal. They support mutually those in previous reports, moreover, some new phenomena are also observed. They also provide the experimental evidences for the deep insight into the magnetic phase–transition behavior of Co3Sn2S2.  相似文献   

15.
Because of outstanding performances of the SiC fiber-reinforced ceramic matrix composites in aircraft/aerospace systems, two silicon carbide fiber-reinforced oxide matrices (SiCf/oxides) composites have been prepared by a precursor infiltration and sintering method. Results indicate that the flexural strength of the SiCf/Al2O3–SiO2 composite reaches 159 MPa, whereas that of the SiCf/Al2O3 composite is only 50 MPa. The high-temperature microwave absorption properties of the composite are significantly enhanced due to choosing Al2O3 and SiO2 as the hybrid matrices. Particularly, the minimum reflection loss (RL) value of the SiCf/Al2O3–SiO2 composite reaches −37 dB in the temperature of 200 °C at 8.6 GHz, and the effective absorption bandwidth (RL ≤ −5 dB) is 4.2 GHz (8.2–12.4 GHz) below 400 °C. The superior microwave absorption properties at high temperatures indicate that the SiCf/Al2O3–SiO2 composite has promising applications in civil and military areas. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47097.  相似文献   

16.
Coatings incorporated with Sb2O3 were obtained on AZ31B magnesium alloy during micro-arc oxidation (MAO) by adding Sb2O3 (0, 2, 4, 6, 8 g/L) into the electrolyte. The voltage of MAO process, microstructure, element distribution, thickness, phase analysis, microhardness, adhesion, and corrosion behavior of the coatings were, respectively, investigated. The results showed that the addition of different concentrations of Sb2O3 caused the voltage variation, which resulted in the changes in microstructure, element distribution, and phase composition of coatings, and further led to the improvement of coatings properties. It was found that the addition of Sb2O3 could effectively decrease the breakdown voltage, and made the voltage of micro-arc oxidation stage change. Moreover, the presence of Sb2O3 influenced surface morphologies of the coatings. Additionally, with the increase in Sb2O3, the microhardness of coatings was 155.2, 199.78, 277.34, 267.53, and 127.93 HV, respectively; these were higher than substrate (68.5 HV). Moreover, the addition of Sb2O3 effectively improved adhesion. As the Sb2O3 increased, the corrosion rate was 2.19 × 10−4, 9.09 × 10−5, 4.10 × 10−5, 2.52 × 10−4, and 2.96 × 10−4 mm/a, respectively, and the corrosion resistance increased first and then decreased with the increase in Sb2O3. In sum, the optimal Sb2O3 concentration was 4 g/L.  相似文献   

17.
Double perovskite Sr2FeReO6 (SFRO) powders were synthesized by so-gel process and annealed in argon atmosphere. Their structural, dielectric, magnetic, electrical, and optical properties were comprehensively investigated. It was found that the SFRO powders possessed a tetragonal crystal structure with I4/m space group and exhibited spherical shapes with some agglomeration due to the magnetic interactions between particles of the powders. Quantitative energy dispersive X-ray spectrometer data revealed the atomic ratio of Sr, Fe, Re, and O elements close to the nominal values of 2:1:1:6. X-ray photoemission spectroscopy spectra reveal two species of Re5+ and Re6-7+ coexist in the SFRO powders. Sr, Fe, and O elements are present as Sr2+, Fe3+, and lattice oxygen, respectively. Dielectric property measurements revealed a Maxwell–Wagner type dielectric dispersion in the SFRO ceramics. Ferromagnetic behavior was verified by the observed magnetic hysteresis loops in the SFRO powders at 2 K and 300 K. The remanent magnetization and coercive field at 2 K were 8.23 emu/g and 3152 Oe, respectively, and the saturated magnetization was estimated to be 21.8 emu/g (or 2.0 μB/f.u.), smaller than the theoretical value of 3.0 μB/f.u. owing to the presence of the anti-site defects. Magnetic Curie temperature (TC) was estimated to be 432.3 K. Intergranular tunneling magnetoresistance and hysteresis phenomena were observed in the SFRO powders at low temperatures, and the MR (2 K, 6 T) was measured to be −15% and −10% for MR (100 K, 6 T). Electrical transport and optical absorption measurements demonstrate the semiconducting nature of the SFRO with optical band gap of 1.39 eV. The electrical transport process follows the small polaron variable range hopping theory. The unique combination of high TC ferromagnetism with the semiconductivity enables the SFRO to be a promising candidate for spintronic devices.  相似文献   

18.
Despite the fact that Titanium and its alloys are materials which have excellent corrosion-resistant properties, they have poor wear and friction performance under tribological conditions. The aim of this study is to find suitable parameters for the surface treatment of Cp-Ti substrates which are used under saline environment. In this study, TiO2 coatings were grown on Cp-Ti substrates at different frequencies which are parameters of the coating process. Due to its low cost and ability to achieve high thicknesses, The Plasma Electrolytic Oxidation (PEO) method was applied to grow TiO2 coatings. The microstructures, morphology, and crystallographic structure were analyzed using SEM and XRD. Tribocorrosion properties of the coatings were investigated using a combination of the pin-on-disk wear test and potentiodynamic polarization test units. The frequency is known to have a strong impact on the PEO process. The impacts of frequency changes on the PEO coating performance were examined under a constant voltage. As result, the increase of the frequency caused smaller pores and cracks in the surface morphology of the coating and at the same time this yielded an increment on the tribocorrosion behavior of the coating.  相似文献   

19.
The activity performances of five AV2P2O10 compounds of either orthorhombic (A=Cd, Ca), or monoclinic (A=Cd, Ba, Pb) symmetry types, have been compared for propane partial oxidation. They present a rather good activity (9% of propane conversion at 460°C) and a high selectivity (60% of propene selectivity). Results are discussed as a function of the differences in the structural properties. Kínetic studies were also performed for propane and propene oxidation reaction.  相似文献   

20.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号