首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ward M  Siegel JA  Corsi RL 《Indoor air》2005,15(2):127-134
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. PRACTICAL IMPLICATIONS: The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.  相似文献   

2.
A novel positive‐polarity electrostatic precipitator (ESP) was developed using an ionization stage (0.4 × 0.4 × 0.14 m3) with 16 carbon fiber ionizers in each channel and a collection stage (0.4 × 0.4 × 0.21 m3) with parallel metallic plates. The single‐pass collection efficiency and clean air delivery rate (CADR) were measured by standard tests using KCl particles in 0.25–0.35 μm. Performance was determined using the Deutsch equation and established diffusion and field charging theories and also compared with the commercialized HEPA filter‐type air cleaner. Experimental results showed that the single‐pass collection efficiency of the ESP ranged from 50 to 95% and decreased with the flow rate (10–20 m3/min), but increased with the voltage applied to the ionizers (6 to 8 kV) and collection plates (?5 to ?7 kV). The ESP with 18 m3/min achieved a CADR of 12.1 m3/min with a voltage of 8 kV applied to the ionization stage and with a voltage of ?6 kV applied to the collection stage. The concentration of ozone in the test chamber (30.4 m3), a maximum value of 5.4 ppb over 12 h of continuous operation, was much lower than the current indoor regulation (50 ppb).  相似文献   

3.
Lam KS  Chan FS  Fung WY  Lui BS  Lau LW 《Indoor air》2006,16(2):86-97
A study was carried out to investigate the feasibility of achieving ultra low respirable suspended particulates (RSP) in commercial offices without major modification of existing ventilation systems by enhancing the particulates removal efficiency of existing central ventilation systems. Four types of filters which include pre-filters, cartridge filters, bag filters and high efficiency particulates air (HEPA) filters were tested in a commercial building in Causeway Bay. The results show that an RSP objective of <20 microg/m3 could be met by removing RSP from both the return air and outdoor air supply simultaneously. This level of performance is classed as 'excellent' by the Hong Kong Government, Environmental Protection Department. Filters with efficiency that exceed 80% placed both in the return air and outdoor air were sufficient to meet the objective. It is not necessary to install HEPA filters to achieve the 'excellent' class. The outdoor air filter has great influence on the steady state indoor RSP concentration while the effective cleaning rate is governed by the return air filter. Higher efficiency filters increased the static drop but the volume flow of the air fan was not affected significantly. The additional cost incurred was <5% of the existing operation cost. PRACTICAL IMPLICATIONS: This paper reports a field study of RSP control for an indoor office environment. The results are directly applicable to building service engineering in the design of ventilation systems using air-handling units. Field observations indicated that indoor RSP in an office environment could be suppressed below 20 microg/m3 within 1 h by the simultaneous filtration of outdoor air and return air. Outdoor air filtration has a great influence on the steady state indoor concentration and return air filtration governs the cleaning rate. It is believed that the results of this study could be extended to the cleaning of other indoor pollutants such as volatile organic compounds.  相似文献   

4.
As part of an ongoing effort to better understand the performance of indoor air cleaners in buildings, the National Institute of Standards and Technology (NIST) has completed a series of gaseous air cleaner field tests and model simulations. This paper focuses on experiments to measure the removal of decane with a sorption-based in-duct gaseous air cleaner and a sorption-based portable air cleaner in a single-zone test house. Due to the lack of standardized gaseous air cleaner field testing protocols, a field test method was developed using semi-real-time concentration measurements and mass balance analysis. A total of 24 experiments were completed with directly measured single-pass removal efficiencies ranging from 24% to 56% and removal efficiencies based on a transient whole building mass balance ranging from 30% to 44%. Experimental results revealed important factors affecting field performance such as air cleaner contaminant loading for the in-duct air cleaner and room air mixing for the portable air cleaner. An additional six tests were conducted to evaluate the predictive capability of the indoor air quality model CONTAM.  相似文献   

5.
The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited utility. Because particles in this range are respirable and can remain airborne for prolonged time periods, measurement of air cleaner fractional efficiency is required for application to indoor air quality issues. The objectives of this work have been to 1) develop a test apparatus and procedure to quantify the fractional filtration efficiency of air cleaners over the 0.01 to 3 μm diameter size range and 2) quantify the fractional efficiency of several induct air cleaners typical of those used in residential and office ventilation systems. Results show that efficiency is highly dependent on particle size, flow rate, and dust load present on the air cleaner. A minimum in efficiency was often observed in the 0.1 to 0.5 μm diameter size range. The presence of a dust load frequently increased an air cleaner's efficiency; however, some air cleaners showed little change or a decrease in efficiency with dust loading. The common furnace filter had fractional efficiency values of less than 10% over much of the measurement size range.  相似文献   

6.
This work uses an in situ filter test method to measure the size‐resolved removal efficiency of indoor‐generated ultrafine particles (approximately 7–100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air‐conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep‐bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60–80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13–16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2–3 in a typical single‐family residence relative to the lowest efficiency filters, depending in part on particle size.  相似文献   

7.
An “Exposure Reduction Effectiveness” index is proposed to quantify the performance of room air cleaners based on their capability of reducing occupants' exposure to pollutants of interest. The index has advantages over existing index such as CADR. It is applicable to both room average and local breathing zones, and can be used to compare air cleaning with the other two IAQ strategies: ventilation and source reduction. A computational fluid dynamics model is developed and used to assess the effectiveness of a room air cleaner for VOCs and particles of different sizes. The simulation results show: (1) species transport model and drift-flux Eulerian model can be used to predict concentration distributions of gaseous pollutants and particulate matters when there's an air cleaner operating and CFD simulation is an efficient tool to analyze personal ventilation; (2) the Exposure Reduction Effectiveness (ERE) index is effective for describing the removal effectiveness of room air cleaners in local zones as well as the room average.  相似文献   

8.
An advantage of portable air cleaners is that they can be positioned in different parts of a building and used where air cleaning is needed. This makes them a popular choice for use in residential buildings. In typical indoor particle modeling efforts, perfect air mixing and uniform contaminant concentration distribution are assumed. However, nonuniform spatial concentrations of particles are more reflective of most environments. Using experiments to validate computational fluid dynamic and particle tracking models and applying these models in numerical based parametric analysis, this paper analyzes the overall contaminant removal in a multi-room residential building. Simulations varied (1) particle size (0.74, 3.4 and 10 μm), (2) clean air delivery rate (CADR) of the air cleaner (50 m3/h and 500 m3/h), and (3) position of portable air cleaner in different rooms. The results show very large variation of the overall particle removal for different positions of portable cleaning device. In extreme cases, the effective positioning of cleaning device can result in a factor of 2.5 change in overall particle removal and, consequently, strongly affect occupant exposure to particles.  相似文献   

9.
This study was carried out in a closed test chamber under natural decay, negative ionic air cleaner application, as well as air mixing mechanism with negative ionic air cleaner. Among three operation modes, the air mixing mechanism with negative ionic air cleaner can reduce particles better under the flow field condition. In the air mixing, especially vigorous one (5 ACH (Air Changes per hour)), enhanced the air cleaning effect. The highest removal efficiency was measured at a height of 0.6 m from the floor and it was decreased substantially with an increase in height. The relative effectiveness of negative ionic air cleaners was predicted to decrease with an increasing particle size. We also found that there was a limited horizontal diffusion of ions. The empirical curves fit based for the concentration gradient of NAI (Negative air ionization) generated was developed for estimating the NAI concentration with different heights and distances from the source of negative ionic air cleaner discharge.  相似文献   

10.
Particle air filters used in central residential forced‐air systems are most commonly evaluated for their size‐resolved removal efficiency for particles 0.3‐10 µm using laboratory tests. Little information exists on the removal efficiency of commercially available residential filters for particles smaller than 0.3 µm or for integral measures of mass‐based aerosol concentrations (eg, PM2.5) or total number concentrations (eg, ultrafine particles, or UFPs) that are commonly used in regulatory monitoring and building measurements. Here, we measure the size‐resolved removal efficiency of 50 new commercially available residential HVAC filters installed in a recirculating central air‐handling unit in an unoccupied apartment unit using alternating upstream/downstream measurements with incense and NaCl as particle sources. Size‐resolved removal efficiencies are then used to estimate integral measures of PM2.5 and total UFP removal efficiency for the filters assuming they are challenged by 201 residential indoor particle size distributions (PSDs) gathered from the literature. Total UFP and PM2.5 removal efficiencies generally increased with manufacturer‐reported filter ratings and with filter thickness, albeit with numerous exceptions. PM2.5 removal efficiencies were more influenced by the assumption for indoor PSD than total UFP removal efficiencies. Filters with the same ratings but from different manufacturers often had different removal efficiencies for PM2.5 and total UFPs.  相似文献   

11.
Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. PRACTICAL IMPLICATIONS: Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.  相似文献   

12.
Recirculating air purification technologies are employed as potential means of reducing exposure to aerosol particles and airborne viruses. Toward improved testing of recirculating air purification units, we developed and applied a medium-scale single-pass wind tunnel test to examine the size-dependent collection of particles and the collection and inactivation of viable bovine coronavirus (BCoV, a betacoronavirus), porcine respiratory coronavirus (PRCV, an alphacoronavirus), and influenza A virus (IAV), by a commercial air purification unit. The tested unit, the Molekule Air Mini, incorporates a MERV 16 filter as well as a photoelectrochemical oxidating layer. It was found to have a collection efficiency above 95.8% for all tested particle diameters and flow rates, with collection efficiencies above 99% for supermicrometer particles with the minimum collection efficiency for particles smaller than 100 nm. For all three tested viruses, the physical tracer-based log reduction was near 2.0 (99% removal). Conversely, the viable virus log reductions were found to be near 4.0 for IAV, 3.0 for BCoV, and 2.5 for PRCV, suggesting additional inactivation in a virus family- and genus-specific manner. In total, this work describes a suite of test methods which can be used to rigorously evaluate the efficacy of recirculating air purification technologies.  相似文献   

13.
舒适性空调空气过滤器效率计算方法   总被引:6,自引:3,他引:3  
徐文华 《暖通空调》2001,31(3):42-44,47
给出了舒适性空调空气过滤器效率的设计计算公式,分析了公式中各量的取值范围,以商场和办公室为例计算出了空气过滤器效率,并分析了计算结果。  相似文献   

14.
Adsorption-based air filters/cleaners are often used to remove gaseous contaminants to improve indoor air quality (IAQ) for residential and office buildings. The performance of a sorbent filter is affected by the sorbent filter design parameters (i.e., granular particle size, packing density), the environmental conditions (i.e., flow velocity, challenge gas concentration, temperature, and relative humidity), and the sorbent properties such as sorption isotherm and in-pellet diffusion coefficient. It is the combined effects of all these parameters that determine the performance of the filter. In this study, Convective Mass Transfer (C-MT) model and Convective and Diffusive Mass Transfer (C&D-MT) model were developed and numerically implemented to simulate the fundamental transport and sorption processes in sorbent-based filters. The models’ behaviors were investigated by simulating the effect of different parameters, and were validated by comparison with experimental data. Detailed mechanism analysis was conducted based on both modeled and experimental results, which indicates that the surface diffusion is a much more important mechanism than pore diffusion, and the external convective mass transfer process is a controlling factor compared to pellet diffusion. This model also provides a useful tool for designing, selecting or maintaining sorption-based filter/air cleaner for non-industrial building applications based on the predicted filter performance over its service life.  相似文献   

15.
洁净空间新型气流分布方式的机理和特性研究   总被引:2,自引:2,他引:0  
在阻漏层概念的指导下,建立了1:1的模型。模型试验结果证实了理论上的预见,在高效过滤器不装在末端(如当层高不够时)而又有一定渗漏的情况下,新的末端将使室内含尘浓度降低50% ̄70%。计算机模拟计算表明了新型末装置的气流分布方式的优越性。  相似文献   

16.
The results of subjective experiments to evaluate the efficiency of portable air cleaners for perceived air pollutants generated by tobacco smoke are described. The efficiency of the five types of air cleaners to remove perceived air pollutants was evaluated by a panel using the decipol unit, and the efficiency to remove particulate was evaluated from concentrations of particulate. It was found that the efficiency of the air cleaner in removing perceived air pollutants was quite different from that in removing particulate  相似文献   

17.
We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (< 1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter.  相似文献   

18.
针对地下商场可能出现的污染物全面超标、局部超标等五种情况以及室内两种污染物并存的实际情况,通过数值模拟方法对复合净化器的最佳安装位置进行了研究.结果表明,应根据地下商场内的污染状况确定复合净化器的安装位置,大多数情况下宜将复合净化器安装在一次回风空调系统的回风道上,但当局部区域污染物严重超标时,宜采用在污染源附近就近设置或就近设置与回风道设置的组合方式;当复合净化器设置在污染源附近时,应根据同时并存的多种污染物的释放强度和浓度限值等因素综合确定其安装位置.  相似文献   

19.
W. J. Fisk  W. R. Chan 《Indoor air》2017,27(5):909-920
This study evaluates the mortality‐related benefits and costs of improvements in particle filtration in U.S. homes and commercial buildings based on models with empirical inputs. The models account for time spent in various environments as well as activity levels and associated breathing rates. The scenarios evaluated include improvements in filter efficiencies in both forced‐air heating and cooling systems of homes and heating, ventilating, and air conditioning systems of workplaces as well as use of portable air cleaners in homes. The predicted reductions in mortality range from approximately 0.25 to 2.4 per 10 000 population. The largest reductions in mortality were from interventions with continuously operating portable air cleaners in homes because, given our scenarios, these portable air cleaners with HEPA filters most reduced particle exposures. For some interventions, predicted annual mortality‐related economic benefits exceed $1000 per person. Economic benefits always exceed costs with benefit‐to‐cost ratios ranging from approximately 3.9 to 133. Restricting interventions to homes of the elderly further increases the mortality reductions per unit population and the benefit‐to‐cost ratios.  相似文献   

20.
Continuous emission of unipolar ions has been shown to improve the performance of respirators and stationary filters challenged with non-biological particles. In this study, we investigated the ion-induced enhancement effect while challenging a low-efficiency heating, ventilation and air-conditioning (HVAC) filter with viable bacterial cells, bacterial and fungal spores, and viruses. The aerosol concentration was measured in real time. Samples were also collected with a bioaerosol sampler for viable microbial analysis. The removal efficiency of the filter was determined, respectively, with and without an ion emitter. The ionization was found to significantly enhance the filter efficiency in removing viable biological particles from the airflow. For example, when challenged with viable bacteria, the filter efficiency increased as much as four- to fivefold. For viable fungal spores, the ion-induced enhancement improved the efficiency by a factor of approximately 2. When testing with virus-carrying liquid droplets, the original removal efficiency provided by the filter was rather low: 9.09 +/- 4.84%. While the ion emission increased collection about fourfold, the efficiency did not reach 75-100% observed with bacteria and fungi. These findings, together with our previously published results for non-biological particles, demonstrate the feasibility of a new approach for reducing aerosol particles in HVAC systems used for indoor air quality control. PRACTICAL IMPLICATIONS: Recirculated air in HVAC systems used for indoor air quality control in buildings often contains considerable number of viable bioaerosol particles because of limited efficiency of the filters installed in these systems. In the present study, we investigated - using aerosolized bacterial cells, bacterial and fungal spores, and virus-carrying particles - a novel idea of enhancing the performance of a low-efficiency HVAC filter utilizing continuous emission of unipolar ions in the filter vicinity. The findings described in this paper, together with our previously published results for non-biological particles, demonstrate the feasibility of the newly developed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号