首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nail technicians are exposed to volatile organic compounds (VOCs) from nail products, but no studies have previously measured VOC biomarkers for these workers. This study of 10 nail technicians aimed to identify VOCs in nail salons and explore relationships between air concentrations and biomarkers. Personal and area air samples were collected using thermal desorption tubes during a work shift and analyzed using gas chromatography/mass spectrometry (GC/MS) for 71 VOCs. Whole blood samples were collected pre‐shift and post‐shift, and analyzed using GC/MS for 43 VOCs. Ventilation rates were determined using continuous CO2 measurements. Predominant air VOC levels were ethyl methacrylate (median 240 µg/m3), methyl methacrylate (median 205 µg/m3), toluene (median 100 µg/m3), and ethyl acetate (median 639 µg/m3). Blood levels were significantly higher post‐shift than pre‐shift for toluene (median pre‐shift 0.158 µg/L and post‐shift 0.360 µg/L) and ethyl acetate (median pre‐shift <0.158 µg/L and post‐shift 0.510 µg/L); methacrylates were not measured in blood because of their instability. Based on VOCs measured in these seven nail salons, we estimated that emissions from Greater Boston area nail salons may contribute to ambient VOCs. Ventilation rates did not always meet the ASHRAE guideline for nail salons. There is a need for changes in nail product formulation and better ventilation to reduce VOC occupational exposures.  相似文献   

2.
Exposure to elevated levels of certain volatile organic compounds (VOCs) in households has been linked to deleterious health effects. This study presents the first large-scale investigation of VOC levels in 169 energy-efficient dwellings in Switzerland. Through a combination of physical measurements and questionnaire surveys, we investigated the influence of diverse building characteristics on indoor VOCs. Among 74 detected compounds, carbonyls, alkanes, and alkenes were the most abundant. Median concentration levels of formaldehyde (14 μg/m3), TVOC (212 μg/m3), benzene (<0.1 μg/m3), and toluene (22 μg/m3) were below the upper exposure limits. Nonetheless, 90% and 50% of dwellings exceeded the chronic exposure limits for formaldehyde (9 μg/m3) and TVOC (200 μg/m3), respectively. There was a strong positive correlation among VOCs that likely originated from common sources. Dwellings built between 1950s and 1990s, and especially, those with attached garages had higher TVOC concentrations. Interior thermal retrofit of dwellings and absence of mechanical ventilation system were associated with elevated levels of formaldehyde, aromatics, and alkanes. Overall, energy-renovated homes had higher levels of certain VOCs compared with newly built homes. The results suggest that energy efficiency measures in dwellings should be accompanied by actions to mitigate VOC exposures as to avoid adverse health outcomes.  相似文献   

3.
We reviewed 47 documents published 1967–2019 that reported measurements of volatile organic compounds (VOCs) on commercial aircraft. We compared the measurements with the air quality standards and guidelines for aircraft cabins and in some cases buildings. Average levels of VOCs for which limits exist were lower than the permissible levels except for benzene with average concentration at 5.9 ± 5.5 μg/m3. Toluene, benzene, ethylbenzene, formaldehyde, acetaldehyde, limonene, nonanal, hexanal, decanal, octanal, acetic acid, acetone, ethanol, butanal, acrolein, isoprene and menthol were the most frequently measured compounds. The concentrations of semi-volatile organic compounds (SVOCs) and other contaminants did not exceed standards and guidelines in buildings except for the average NO2 concentration at 12 ppb. Although the focus was on VOCs, we also retrieved the data on other parameters characterizing cabin environment. Ozone concentration averaged 38 ppb below the upper limit recommended for aircraft. The outdoor air supply rate ranged from 1.7 to 39.5 L/s per person and averaged 6.0 ± 0.8 L/s/p (median 5.8 L/s/p), higher than the minimum level recommended for commercial aircraft. Carbon dioxide concentration averaged 1315 ± 232 ppm, lower than what is permitted in aircraft and close to what is permitted in buildings. Measured temperatures averaged 23.5 ± 0.8°C and were generally within the ranges recommended for avoiding thermal discomfort. Relative humidity averaged 16% ± 5%, lower than what is recommended in buildings.  相似文献   

4.
Nagda NL  Rector HE 《Indoor air》2003,13(3):292-301
This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.  相似文献   

5.
Carbon dioxide (CO2) is an important environmental parameter in aircraft cabins. To understand the most recent, real-time CO2 concentration levels and their key influencing factors in aircraft cabins, we conducted in-flight measurements of 52 randomly selected commercial flights with different aircraft types and durations from August 2017 to August 2019. The spatial temporal characteristics of CO2 concentrations on board were analyzed and summarized. For the flight time scale, the CO2 concentrations during the boarding phase (1680 ± 558 ppmv) were notably higher than that in other phases, whereas the condition of the cruising phase was the lowest in most flights. The flight average CO2 concentrations of the cruising phase were 1253 ± 164 ppmv, and the corresponding estimated outside airflow rates were 6.2 ± 1.3 L/s/p in the economy class across all flights. Single-aisle and twin-aisle flights did not show noticeable differences for the same phases. Relatively uniform CO2 concentrations were observed at different positions of the same class. By comparing the results of this study with those previously reported, CO2 concentrations showed a slightly decreasing trend over the last 30 years. This suggested a slightly increased ventilation rate and potentially superior air quality on board.  相似文献   

6.
Many volatile organic compounds (VOCs) are classified as known or possible carcinogens, irritants, and toxicants, and VOC exposure has been associated with the onset and exacerbation of asthma. This study characterizes VOC levels in 126 homes of children with asthma in Detroit, Michigan, USA. The total target VOC concentration ranged from 14 to 2274 μg/m3 (mean = 150 μg/m3; median = 91 μg/m3); 56 VOCs were quantified; and d‐limonene, toluene, p, m‐xylene, and ethyl acetate had the highest concentrations. Based on the potential for adverse health effects, priority VOCs included naphthalene, benzene, 1,4‐dichlorobenzene, isopropylbenzene, ethylbenzene, styrene, chloroform, 1,2‐dichloroethane, tetrachloroethene, and trichloroethylene. Concentrations varied mostly due to between‐residence and seasonal variation. Identified emission sources included cigarette smoking, solvent‐related emissions, renovations, household products, and pesticides. The effect of nearby traffic on indoor VOC levels was not distinguished. While concentrations in the Detroit homes were lower than levels found in other North American studies, many homes had elevated VOC levels, including compounds that are known health hazards. Thus, the identification and control of VOC sources are important and prudent, especially for vulnerable individuals. Actions and policies to reduce VOC exposures, for example, sales restrictions, improved product labeling, and consumer education, are recommended.  相似文献   

7.
In retail stores, workers are constantly exposed to new manufactured goods. The issue of the exposure of retail workers to volatile organic compounds (VOCs) should clearly be considered. Therefore, this study provides data regarding VOC concentrations in ten French retail stores. The stores were chosen to represent various products: sports goods, shoes and leather, furniture, car equipment, bazaars, online-sales storage, clothes, books, DIY (do-it-yourself), and household appliances. VOCs and aldehydes were actively sampled on the same day in five to seven locations per building and outdoors. Toluene and formaldehyde were omnipresent with indoor concentrations reaching 252 and 53 µg/m3, respectively. The car equipment store, followed by clothing, shoes, and leather, and DIY stores showed the worst indoor air quality. High concentrations were measured, for example, the maximum α-pinene concentration in the furniture and DIY stores was 364 and 141 µg/m3, respectively, and the heptane concentration in the car equipment store reached 1,316 µg/m3. Two VOCs classified as toxic to reproduction were measured: hexane in the car equipment store and the bazaar, and dimethylformamide in the sports goods store. This study shows some disparities in the indoor concentrations among different locations in the same store, particularly between sales and storage areas.  相似文献   

8.
Hotel housekeepers represent a large, low-income, predominantly minority, and high-risk workforce. Little is known about their exposure to chemicals, including volatile organic compounds (VOCs). This study evaluates VOC exposures of housekeepers, sources and factors affecting VOC levels, and provides preliminary estimates of VOC-related health risks. We utilized indoor and personal sampling at two hotels, assessed ventilation, and characterized the VOC composition of cleaning agents. Personal sampling of hotel staff showed a total target VOC concentration of 57 ± 36 µg/m3 (mean ± SD), about twice that of indoor samples. VOCs of greatest health significance included chloroform and formaldehyde. Several workers had exposure to alkanes that could cause non-cancer effects. VOC levels were negatively correlated with estimated air change rates. The composition and concentrations of the tested products and air samples helped identify possible emission sources, which included building sources (for formaldehyde), disinfection by-products in the laundry room, and cleaning products. VOC levels and the derived health risks in this study were at the lower range found in the US buildings. The excess lifetime cancer risk (average of 4.1 × 10−5) still indicates a need to lower exposure by reducing or removing toxic constituents, especially formaldehyde, or by increasing ventilation rates.  相似文献   

9.
Partitioning to surfaces is an important sink for volatile organic compounds (VOCs) indoors, but the mechanisms are not well understood or quantified. Here, a mass spectrometer was coupled to a portable surface reactor and a flow tube to measure partitioning of VOCs into paint films coated onto glass or wallboard, and their subsequent diffusion. A model was developed to extract values of the effective absorbing organic mass concentration of the film, Cw, which is a measure of absorption capacity, and VOC diffusion coefficients, Df, from VOC time profiles measured during film passivation and depassivation. Values of Cw agreed well with the value estimated from the paint film mass and flow tube air volume, and Df values (also measured using attenuated total reflectance-Fourier transform infrared spectroscopy) correlated well with VOC vapor saturation concentrations, C*, estimated using a group contribution method. The value of these relationships for estimating key parameters that control VOC partitioning into paint and the fate of VOCs indoors was demonstrated using a house model, which indicated that >50% of VOCs with C* ≤108 μg/m3 (C* of octane, hexanone, and propanol) that contacted a paint film of typical thickness fully permeated the film regardless of emission duration.  相似文献   

10.
Children are particularly vulnerable to many classes of the volatile organic compounds (VOCs) detected in indoor environments. The negative health impacts associated with chronic and acute exposures of the VOCs might lead to health issues such as genetic damage, cancer, and disorder of nervous systems. In this study, 40 VOCs including aldehydes and ketones, aliphatic hydrocarbons, esters, aromatic hydrocarbons, cyclic terpenes, alcohols, and glycol ethers were identified and qualified in different locations at the University of Missouri (MU) Child Development Laboratory (CDL) in Columbia, Missouri. Our results suggested that the concentrations of the VOCs varied significantly among classrooms, hallways, and playground. The VOCs emitted from personal care and cleaning products had the highest indoor levels (2-ethylhexanol-1, 3-carene, homomenthyl salicylate with mean concentration of 5.15 µg/m3, 1.57 µg/m3, and 1.47 µg/m3, respectively). A cancer risk assessment was conducted, and none of the 95th percentile dose estimates exceeded the age-specific no significant risk levels (NSRL) in all classrooms. Dimensionless toxicity index scores were calculated for all VOCs using a novel web-based framework called Toxicological Prioritization Index (ToxPi), which integrates multiple sources of toxicity data. According to the method, homomenthyl salicylate, benzothiazole, 2-ethylhexyl salicylate, hexadecane, and tridecane exhibited diverse toxicity profiles and ranked as the five most toxic indoor VOCs. The findings of this study provide critical information for policy makers and early education professionals to mitigate the potentially negative health impacts of indoor VOCs in the childcare facilities.  相似文献   

11.
Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories, their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test (round robin test, RRT) every two years using well-characterized test materials (one sealant, one furniture board, and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 36 VOCs were included of which 33 gave test chamber air concentrations between 13 and 83 µg/m3. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Three compounds had higher concentrations between 326 and 1105 µg/m3. In this paper, the relative standard deviations (RSD) of BAM round robin tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 28% in 2018. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%.  相似文献   

12.
W. Cui  H. Wang  T. Wu  Q. Ouyang  S. Hu  Y. Zhu 《Indoor air》2017,27(2):282-290
Passengers in aircraft cabins are exposed to low‐pressure environments. One of the missing links in the research on thermal comfort under cabin conditions is the influence of low air pressure on the metabolic rate. In this research, we simulated the cabin pressure regime in a chamber in which the pressure level could be controlled. Three pressure levels (101/85/70 kPa) were tested to investigate how metabolic rate changed at different pressure levels. The results show that as pressure decreased, the respiratory flow rate (RFR) at standard condition (STPD: 0°C, 101 kPa) significantly decreased. Yet the oxygen (O2) consumption and carbon dioxide (CO2) production significantly increased, as reflected in the larger concentration difference between inhaled and exhaled air. A significant increase in the respiratory quotient (RQ) was also observed. For metabolic rate, no significant increase (P > 0.05) was detected when pressure decreased from 101 kPa to 85 kPa; however, the increase associated with a pressure decrease from 85 kPa to 70kPa was significant (P < 0.05). Empirical equations describing the above parameters are provided, which can be helpful for thermal comfort assessment in short‐haul flights.  相似文献   

13.
Basements can influence indoor air quality by affecting air exchange rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs, and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady‐state multitracer system, and 7‐day VOC measurements were collected using passive samplers in both living areas and basements. A walk‐through survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52/h, respectively, and had strong and opposite seasonal trends, for example, AERs were highest in residences during the summer, and highest in basements during the winter. Airflows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right‐skewed, for example, 90th percentile benzene, toluene, naphthalene, and limonene concentrations were 4.0, 19.1, 20.3, and 51.0 μg/m3, respectively; maximum concentrations were 54, 888, 1117, and 134 μg/m3. Identified VOC sources in basements included solvents, household cleaners, air fresheners, smoking, and gasoline‐powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements.  相似文献   

14.
Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3) and personal exposure samples (ECM mean difference of −3.8 µg/m3 vs UPAS mean difference of −12.9 µg/m3). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup.  相似文献   

15.
Hairdressers are exposed to particulate matter (PM), a known air pollutant linked to adverse health effects. Still, studies on occupational PM exposures in hair salons are sparse. We characterized indoor air PM concentrations in three salons primarily serving an African/African American (AA) clientele, and three Dominican salons primarily serving a Latino clientele. We also assessed the performance of low-cost sensors (uRAD, Flow, AirVisual) by comparing them to high-end sensors (DustTrak) to conduct air monitoring in each salon over 3 days to quantify work shift concentrations of PM2.5, respirable PM (RPM), and PM10. We observed high spatial and temporal variability in 30-min time-weighted average (TWA) RPM concentrations (0.18–5518 μg/m3). Readings for the uRAD and AirVisual sensors were highly correlated with the DustTrak (R2 = 0.90–0.99). RPM 8-hour TWAs ranged from 18 to 383 µg/m3 for AA salons, and 9–2115 µg/m3 for Dominican salons. Upper 95th percentiles of daily RPM exposures ranged from 439 to 2669 µg/m3. The overall range of 30-min TWA PM2.5 and PM10 concentrations was 0.13–5497 and 0.36-,541 μg/m3, respectively. Findings suggest that hairdressers could be overexposed to RPM during an 8-hour shift. Additional comprehensive monitoring studies are warranted to further characterize temporal and spatial variability of PM exposures in this understudied occupational population.  相似文献   

16.
Although short-duration elevated exposures (peak exposures) to pollutants may trigger adverse acute effects, epidemiological studies to understand their influence on different health effects are hampered by lack of methods for objectively identifying peaks. Secondhand smoke from cigarettes (SHS) in the residential environment can lead to peak exposures. The aim of this study was to explore whether peaks in continuous PM2.5 data can indicate SHS exposure. A total of 41 children (21 with and 20 without SHS exposure based on self-report) from 28 families in New York City (NY, USA) were recruited. Both personal and residential continuous PM2.5 monitoring were performed for five consecutive days using MicroPEM sensors (RTI International, USA). A threshold detection method based on cumulative distribution function was developed to identify peaks. When children were home, the mean accumulated peak area (APA) for peak exposures was 297 ± 325 hour*µg/m3 for children from smoking families and six times that of the APA from non-smoking families (~50 ± 54 hour*µg/m3). Average PM2.5 mass concentrations for SHS exposed and unexposed children were 24 ± 15 µg/m3 and 15 ± 9 µg/m3, respectively. The average SHS exposure duration represents ~5% of total exposure time, but ~13% of children's total PM2.5 exposure dose, equivalent to an additional 2.6 µg/m3 per day. This study demonstrated the feasibility of peak analysis for quantifying SHS exposure. The developed method can be adopted more widely to support epidemiology studies on impacts of short-term exposures.  相似文献   

17.
Exposure to high concentrations of particulate matter (PM) is associated with a number of adverse health effects. However, it is unclear which aspects of PM are most hazardous, and a better understanding of particle sizes and personal exposure is needed. We characterized particle size distribution (PSD) from biomass-related pollution and assessed total and regional lung-deposited doses using multiple-path deposition modeling. Gravimetric measurements of kitchen and personal PM2.5 (<2.5 µm in size) exposures were collected in 180 households in rural Puno, Peru. Direct-reading measurements of number concentrations were collected in a subset of 20 kitchens for particles 0.3-25 µm, and the continuous PSD was derived using a nonlinear least-squares method. Mean daily PM2.5 kitchen concentration and personal exposure was 1205 ± 942 µg/m3 and 115 ± 167 µg/m3, respectively, and the mean mass concentration consisted of a primary accumulation mode at 0.21 µm and a secondary coarse mode at 3.17 µm. Mean daily lung-deposited surface area (LDSA) and LDSA during cooking were 1009.6 ± 1469.8 µm2/cm3 and 10,552.5 ± 8261.6 µm2/cm3, respectively. This study presents unique data regarding lung deposition of biomass smoke that could serve as a reference for future studies and provides a novel, more biologically relevant metric for exposure-response analysis compared to traditional size-based metrics.  相似文献   

18.
Correctional centers (prisons) are one of the few non‐residential indoor environments where smoking is still permitted. However, few studies have investigated indoor air quality (IAQ) in these locations. We quantified the level of inmate and staff exposure to secondhand smoke, including particle number (PN) count, and we assessed the impact of the smoking ban on IAQ. We performed measurements of indoor and outdoor PM2.5 and PN concentrations, personal PN exposure levels, volatile organic compounds (VOCs), and nicotine both before and after a complete indoor smoking ban in an Australian maximum security prison. Results show that the indoor 24‐h average PM2.5 concentrations ranged from 6 (±1) μg/m3 to 17 (±3) μg/m3 pre‐ban. The post‐ban levels ranged from 7 (±2) μg/m3 to 71 (±43) μg/m3. While PM2.5 concentrations decreased in one unit post‐ban, they increased in the other two units. Similar post‐ban increases were also observed in levels of PN and VOCs. We describe an unexpected increase of indoor pollutants following a total indoor smoking ban in a prison that was reflected across multiple pollutants that are markers of smoking. We hypothesise that clandestine post‐ban smoking among inmates may have been the predominant cause.  相似文献   

19.
The intensity, frequency, duration, and contribution of distinct PM2.5 sources in Asian households have seldom been assessed; these are evaluated in this work with concurrent personal, indoor, and outdoor PM2.5 and PM1 monitoring using novel low-cost sensing (LCS) devices, AS-LUNG. GRIMM-comparable observations were acquired by the corrected AS-LUNG readings, with R2 up to 0.998. Twenty-six non-smoking healthy adults were recruited in Taiwan in 2018 for 7-day personal, home indoor, and home outdoor PM monitoring. The results showed 5-min PM2.5 and PM1 exposures of 11.2 ± 10.9 and 10.5 ± 9.8 µg/m3, respectively. Cooking occurred most frequently; cooking with and without solid fuel contributed to high PM2.5 increments of 76.5 and 183.8 µg/m3 (1 min), respectively. Incense burning had the highest mean PM2.5 indoor/outdoor (1.44 ± 1.44) ratios at home and on average the highest 5-min PM2.5 increments (15.0 µg/m3) to indoor levels, among all single sources. Certain events accounted for 14.0%-39.6% of subjects’ daily exposures. With the high resolution of AS-LUNG data and detailed time-activity diaries, the impacts of sources and ventilations were assessed in detail.  相似文献   

20.
This study presents findings of indoor environmental quality (IEQ) investigations conducted in elementary schools׳ classrooms in the United Arab Emirates (UAE). Average TVOC, CO2, O3, CO, and particle concentrations measured in the classrooms were 815 µg/m3, 1605 ppm, 0.05 ppm, 1.16 ppm, and 1730 µg/m3, respectively. Whereas, local authority known as Dubai Municipality recommended 300 µg/m3, 800 ppm, 0.06 ppm, 9 ppm, and 150–300 µg/m3 for TVOC, CO2, O3, CO, and particle, respectively. Dubai Municipality recommended temperature and relative humidity (RH) levels of 22.5 °C to 25.5 °C and 30%–60%, respectively. Average temperature and RH levels measured in the classrooms were 24.5 °C and 40.4%, respectively. Average sound level in the classrooms was 24 dB greater than recommended sound level limit of 35 dB. Six (6) classrooms had average lux levels in the range of 400–800 lux. Two (2) classrooms had average lux levels in the range of 100–200 lux. The remaining classrooms had lux levels around the recommended 300 lux. High occupancy density was observed in majority of the studied classrooms. Observations during walkthrough investigations could be used to explain measured IEQ data. Poor IEQ conditions in the studied classrooms highlight the need for further research investigation to understand how poor classrooms׳ IEQ condition could influence students׳ health, comfort, attendance rate, and academic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号