首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Polymer-derived ceramic materials exhibit adjustable composition, microstructure, and dielectric properties and are widely used as high temperature microwave absorption materials in the aerospace field. In this study, polymer-derived SiCN ceramic aerogels with excellent electromagnetic wave absorption (EMA) properties were successfully fabricated through a combination of the sol-gel, freeze- drying, and polymer precursor conversion methods. The hydrosilylation reaction between the Si-H bond in polysilazane (a polymer ceramic precursor) and the C = C bond in divinylbenzene (a cross-linking agent) occurs to form a wet gel. The effects of the molar ratios of the two bonds (C = C/Si-H) on the microstructure and EMA properties of the SiCN ceramic aerogels were systematically studied. At a C = C/Si–H molar ratio of 1.25:1, the minimum reflection loss of the SiCN ceramic aerogels is −37.57 dB at 10.88 GHz. Moreover, the corresponding effective absorption bandwidth covers almost the entire X-band, showing excellent EMA properties.  相似文献   

2.
    
The electrical and dielectric properties of boron nitride nanotubes (BNNTs) reinforced ceramic composites using the polymer-derived ceramic (PDC) processing route were investigated in this work. The electrical resistivity of the pristine PDC increases from 106 to 108 Ω m after the addition of BNNTs. When the BNNT loading was increased to 5 wt%, the average real relative permittivity of the PDC decreased from 2.94 to 2.80, while the quality factor (Q) of the PDC increased from 134.40 to 176.77. The BNNTs can increase the Q factor of the PDC due to the reduction in the porosity cause by the introduction of the BNNTs. Further increasing the BNNT content decreases the real relative permittivity of the nanocomposites and increases the Q factor at high frequency. The average real relative permittivity decreases to 2.29, while the average Q factor increases to 208.60 when the BNNT content is increased to 30 wt%. The dielectric loss after the addition of high fraction of BNNTs can be explained by the Lorentz resonance relaxation process. Results of this work showed that PDC-BNNT nanocomposites are satisfactory electromagnetic transparent materials when the BNNT fraction is less than 10 wt%.  相似文献   

3.
    
In the present work, a high surface area SiC(O)-based ceramic powder was synthesized upon thermal transformation of a polymer-derived macromolecular precursor, which was obtained by the chemical modification of a allylhyldrido polycarbosilane with poly(ethylene glycol) methaacrylate under argon environment. The pyrolysis of developed precursor led to the formation of amorphous and high surface area SiC(O)-based ceramic powder with in situ generated micro/meso-porosity. The specific surface area of the obtained powders depends on the processing temperature. It decreases from 363 to 122 m2/g as the pyrolysis temperature increases from 600 to 1200°C, respectively. Furthermore the promising samples were fabricated using pressing technique, which led to crack-free SiC(O) monoliths on subsquent heat treatment. The present study also emphasizes the potential of produced SiC(O) ceramic powder to support NiO catalyst. The impregnation method were used to produce high surface area NiO@SiC(O) ceramic powder (NiO as a catalyst; SiC(O) as a catalyst support) for further catalytic applications. Interestingly, the distribution of the NiO was shown to strongly depend on the oxygen content present in the SiC(O) matrix. Thus, larger oxygen contents induce homogeneously distributed flower-like NiO catalyst onto SiC(O).  相似文献   

4.
ZrB2陶瓷制备研究进展   总被引:1,自引:0,他引:1  
周庭  谢征芳 《化工进展》2013,(10):2434-2439
航天航空、新兵器、新能源等高科技领域的快速发展对超高温陶瓷材料提出了迫切的需求,ZrB2陶瓷材料是最重要的超高温陶瓷材料之一。本文阐明了ZrB2陶瓷拥有优异性能的原因,综述了ZrB2陶瓷材料的制备研究进展,介绍了固相法、气相法、前体法制备ZrB2陶瓷材料的机理,对比了各种ZrB2陶瓷材料制备方法的优缺点,并指出了有机前体转化法具有可设计性好、不含杂质元素、成型可控、陶瓷转化温度低等优点。本文总结得出有机前体转化法是制备ZrB2超高温陶瓷复合材料较理想的方法,以及基于有机聚合物的ZrB2陶瓷前体是未来重要的发展方向之一。  相似文献   

5.
This paper presents the pressureless preparation of dense and crack-free near stoichiometric SiC monoliths via cross-linking and pyrolysis of a polycarbosilane, followed by polymer-infiltration-pyrolysis cycles. The composition and the porosity of the samples strongly depend on the processing temperature. Thus, at 1050–1100 °C, the SiC monoliths are X-ray amorphous and exhibit low amounts of oxygen and excess carbon; their porosity was rather high (>10%). Higher processing temperatures induced the crystallization of β-SiC. The removal of oxygen and excess carbon due to CO release allowed for obtaining near-stoichiometric compositions at 1700 °C. However, the residual porosity of the samples increased. The use of the PIP technique led already after six cycles to dense monoliths (residual porosity ca. 0.5%).The present study emphasizes the potential of the polymer processing technique for the fabrication of near stoichiometric and dense SiC monoliths, which might be used for structural applications in harsh conditions.  相似文献   

6.
    
This work focuses on silicon oxycarbide thin film preparation and characterization. The Taguchi method of experimental design was used to optimize the process of film deposition. The prepared ceramic thin films with a thickness of c. 500 nm were characterized concerning their morphology, composition, and electrical properties. The molecular structure of the preceramic polymers used for the preparation of the ceramic thin films as well as the thermomechanical properties of the resulting SiOC significantly influenced the quality of the ceramic films. Thus, an increase in the content of carbon was found beneficial for the preparation of crack-free thin films. The obtained ceramic films exhibited increased electrical conductivity as compared to monolithic SiOC of similar chemical composition. This was shown to correlate with the unique hierarchical microstructure of the SiOC films, which contain large oxygen-depleted particles, mainly consisting of highly graphitized carbon and SiC, homogeneously dispersed in an oxygen-containing amorphous matrix. The matrix was shown to also contain free carbon and to contribute to charge carrier transport between the highly conductive large particles. The ceramic thin films possess electrical conductivities in the range from 5.4 to 8.8 S/cm and may be suitable for implementation in miniaturized piezoresistive strain gauges.  相似文献   

7.
    
《Ceramics International》2021,47(22):31561-31566
In the present work, polymer-derived SiCN ceramic aerogels (PDCA-SiCN) were fabricated via a combined sol-gel/freeze drying/polymer precursor conversion method. The microstructure of PDCA-SiCN was studied by regulating the synthesis temperature and time during the sol-gel process. PDCA-SiCN showed a unique three-dimensional network structure, and the specific surface area and pore size of PDCA-SiCN prepared at 150 °C for 20 h were 134 g/m2 and 18 nm, respectively. To assess the electromagnetic wave absorption (EMA) properties of PDCA-SiCN, the materials were uniformly blended with common paraffin, and the influence of PDCA-SiCN/paraffin ratio on the EMA properties was also investigated. The sample with a PDCA-SiCN/paraffin ratio of 20:80 exhibited the best EMA performance, with a minimum reflection loss (RL) of −43.37 dB at 7.6 GHz and electromagnetic absorption bandwidth of 3.8 GHz, which correspond to an absorption of 99.99 % of the electromagnetic waves. The excellent EMA properties of PDCA-SiCN could be attributed to a synergistic effects of good impedance matching, multiple reflections and high dielectric loss.  相似文献   

8.
    
The Si-O-C ceramics were prepared by polymer-derived ceramic method using polysiloxane/FeCl3 as precursor with the FeCl3 content of 1.0 wt%. The microstructure, dielectric properties, and electromagnetic wave (EMW) absorbing properties in X band of the Si-O-C ceramic were investigated. It was found that the pyrolysis temperature has a great influence on the amount of in-situ formed CNTs and the transformation from CNTs to 1D SiC nanostructures. With the temperature rising from 1000 to 1500°C, the SiC formed with various morphologies including SiC microspheres, needle-like SiC, and SiC nanowires which were transformed from CNTs. The EMW absorbing properties were dramatically improved when the pyrolysis temperature raised to 1500°C; the minimum reflection loss (RL) was −58.37 dB of sample with a thickness of 2.95 mm at 10.11 GHz, and the absorbing band (RL ≤−20 dB) of sample at a thickness of 3.0 mm covers 3.8 GHz (8.2-12.0 GHz), which means more than 99% of the EMW were absorbed. The enhancement of EMW absorbing properties of bulk Si-O-C ceramics was attributed to the interfacial polarization induced by in-situ heterogeneous nanostructures with complex interfaces.  相似文献   

9.
We present here the single-source-precursor synthesis of Fe3Si and Fe5Si3-containing SiOC ceramic nanocomposites and investigation of their magnetic properties. The materials were prepared upon chemical modification of a hydroxy- and ethoxy-substituted polymethylsilsesquioxane with iron (III) acetylacetonate (Fe(acac)3) in different amounts (5, 15, 30 and 50 wt%), followed by cross-linking at 180 °C and pyrolysis in argon at temperatures ranging from 1000 °C to 1500 °C. The polymer-to-ceramic transformation of the iron-modified polysilsesquioxane and the evolution at high temperatures of the synthesized SiFeOC-based nanocomposite were studied by means of thermogravimetric analysis (TGA) coupled with evolved gas analysis (EGA) as well as X-ray diffraction (XRD). Upon pyrolysis at 1100 °C, the non-modified polysilsesquioxane converts into an amorphous SiOC ceramic; whereas the iron-modified precursors lead to Fe3Si/SiOC nanocomposites. Annealing of Fe3Si/SiOC at temperatures exceeding 1300 °C induced the crystallization of Fe5Si3 and β-SiC. The crystallization of the different iron-containing phases at different temperatures is considered to be a consequence of the in situ generation of a Fe–C–Si alloy within the materials during pyrolysis. Depending on the Fe and Si content in the alloy, either Fe3Si and graphitic carbon (at 1000–1200 °C) or Fe5Si3 and β-SiC (at T > 1300 °C) crystallize. All SiFeOC-based ceramic samples were found to exhibit soft magnetic properties. Magnetization versus applied field measurements of the samples show a saturation magnetization up to 26.0 emu/g, depending on the Fe content within the SiFeOC-based samples as well as on the crystalline iron silicide phases formed during pyrolysis.  相似文献   

10.
    
Hexagonal boron nitride (h-BN) with low dielectric loss and high temperature resistance opens up new opportunities for the preparation of polymer-derived SiCN ceramics (PDCs-SiCN ceramics) with excellent mechanical and dielectric properties. BN-containing polymer-derived SiCN composite ceramics (PDCs-SiCN(BN) composite ceramics) with different BN content were prepared via a pyrolysis process of ball-milling-blended Polyvinylsilazane/boron nitride (PVSZ/BN) precursors. BN is stably embedded in the SiCN tissue and tightly bound with it. The appropriate content of BN greatly improves the mechanical properties of PDCs-SiCN ceramics, as BN reduces the number of pores and prevents crack expansion. Additionally, BN is also beneficial in lowering the dielectric loss of PDCs-SiCN ceramics because of the weakened polarization relaxation behavior. PDCs-SiCN (BN) composite ceramics have optimal mechanical and dielectric properties when the BN content is 1 wt%. The flexural strength, flexural modulus and compression strength of PDCs-SiCN(BN) composite ceramics with 1 wt% BN doping content were 189.37 MPa, 46.38 GPa, and 399.02 MPa, respectively. Its average dielectric loss (tanδε) at 12.4-18 GHz is 0.0049.  相似文献   

11.
    
A new type of high-temperature-resistant SiZrBOC ceramics was prepared by sol-gel method using polymethyl-hydro siloxane (PMHS), boric acid (B(OH)3), and n-propyl zirconate (Zr(OPr)4) as raw materials. After high-temperature pyrolysis, the SiZrBOC precursor was transformed into a crystalline ceramic material with a yield of 89.5 wt%. Fourier infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were applied to characterize the polymer-ceramic conversion process and thermal behavior of ceramic precursors. According to the results, the addition of boron elements led to the formation of Si-O-B links in the system. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the phase composition and microstructure of SiZrBOC ceramics. Finally, the oxidation test at 1200 °C revealed that SiZrBOC ceramics with a boron/zirconium molar ratio of 2.5:1 exhibited the best oxidation resistance at a weight gain of 0.4 wt% only.  相似文献   

12.
    
Protective ceramic-based coatings are frequently the most suitable solutions for problems like corrosion and wear. It has been shown that the precursor technology is suitable for the preparation of ceramic coatings by pyrolysis in a furnace. However, the required high temperature for the preparation of the ceramic coatings limits this approach to high temperature-resistant substrates. A very innovative approach to overcome this restriction is the use of laser radiation as a thermal source for the pyrolysis of the preceramic polymer. In this paper, we report on a coating system, for steel substrates, consisting of a polysilazane (Durazane 2250) bond coat and a hard and dense top-coat composed of an organosilazane (Durazane 1800) with tetragonal ZrO2 particles and aluminum flakes as fillers pyrolyzed using Nd:YVO4 laser. The aluminum fillers led to a significant increase in absorption of the laser energy leading to the formation of a dense coating with a thickness up to 20 μm and a mainly cellular/columnar-dendritic microstructure. The microstructure, mechanical, and tribological behaviors of these composite coatings are reported and compared to those of laser pyrolyzed glass/ZrO2-filled polysilazane-based coatings reported in the literature.  相似文献   

13.
    
Mechanical properties of polymer-derived ceramics are usually measured on samples pyrolyzed in inert atmosphere. Here, we report the hardness and elastic modulus of SiOC and SiCN pyrolyzed in both inert (Ar) and reactive (CO2) atmosphere. The external surface of the specimens exposed to the pyrolysis gas was characterized by Vickers microhardness measurements and infrared spectroscopy. The elastic modulus was evaluated by three-point bending tests on thin (150-200 µm) and dense specimens. Polished sections of the SiOC samples were prepared to study, by energy-dispersive X-ray spectroscopy (EDXS) and nanoindentation, how the elemental composition, hardness, and elastic modulus vary from the surface toward the bulk. For both compositions, pyrolysis in CO2 leads to a strong decrease in the hardness and elastic modulus. The hardness of both the samples pyrolyzed in CO2 approaches the typical value for fused silica, suggesting that CO2 selectively breaks the Si–C and Si–N bonds and leads to the formation of a silica-like network. EDXS and nanoindentation reveal that the modification induced by the CO2 flow extends below the surface at least for a thickness of about 30 µm.  相似文献   

14.
This paper presents the pressureless preparation of fully dense and crack-free SiOC ceramics via direct photo-crosslinking and pyrolysis of a polysiloxane. Elemental analysis revealed the presence of high levels of carbon in the SiOC ceramics. Thus, the samples showed the highest content (78-86 mol%) of segregated “free” carbon reported so far. XRD investigations indicated that the materials prepared at 1100 °C were X-ray amorphous, whereas the sample prepared at 1400 °C contained a turbostratic graphite-like phase and silicon carbide as crystalline phases, as additionally confirmed by TEM and Raman spectroscopy. Vickers hardness was measured to be 5.5-8.6 GPa. The dc resistivity of the prepared material at 1100 °C was 0.35 Ω m, whereas the ceramic pyrolyzed at 1400 °C showed a value of 0.14 Ω m; both values are much lower than those of other known SiOC materials. This latter feature was attributed to the presence of a percolating carbon network in the ceramic.  相似文献   

15.
Dense polymer‐derived silicon carbonitride (SiCN) ceramic bulks were fabricated by powder consolidation following precursor infiltration and pyrolysis (PIP) densification. The density and open porosity of the ceramics varied from 1.42 g/cm3 and 32.75% before the PIP to 2.29 g/cm3 and 3.64% after the PIP, respectively. The electrical conductivity of the ceramics sharply increased from 6.26 × 10?10 S/cm before the PIP process to 3.20 × 10?7 S/cm after the 1st cycle of PIP and then gradually increased to 6.89 × 10?6 S/cm after four cycles of PIP. However, the piezoresistive coefficient did not change with the PIP. The Raman and electron paramagnetic resonance results show that the graphitization level of free carbon in ceramics derived from PIP was higher than the ceramics derived from powder consolidation. The high graphitization level of free carbon leads to a high conductivity, and thus the conductivity of ceramics increased significantly after the PIP process. The carbon cluster size, which is related to the gauge factor of piezoresistivity, did not change significantly after the PIP process; thus, the gauge factor did not change significantly. Dense, large‐scale polymer‐derived ceramics were fabricated by combined conventional powder consolidation and PIP without the loss of piezoresistivity. These ceramics have potential application as both structural and functional components that can bear loads as well as monitor variations in external stress.  相似文献   

16.
    
Polymer-derived ceramics (PDCs) have recently attracted an increasing attention because of their applications for wireless passive pressure sensors in the harsh environment. However, due to the effect of temperature on the frequency of PDC-based wireless passive pressure sensors, it is not beneficial to accurate measurement of pressure. In this paper, a dense polymer-derived silicon carbonitride (SiCN) ceramic was prepared by precursor infiltration and pyrolysis (PIP) technique to reduce the temperature sensitivity of PDC–SiCN-based pressure sensor. The open porosity and density of SiCN ceramics varied from 13.34% and 1.89 g/cm3 without PIP process to 3.24% and 2.09 g/cm3 after three PIP cycles, respectively. Raman spectroscopy revealed that the level of graphitization of free carbon in dense SiCN ceramics is higher than that in porous SiCN ceramics, which would lead to an increase in the conductivity of dense SiCN ceramics. After three PIP cycles, the conductivity increased by almost two orders of magnitude from 3.01E − 10 to 1.28E − 08 S/cm. In addition, SiCN ceramic discs after PIP cycles and without PIP were applied to wireless passive pressure sensor based on resonator, which were tested at high temperature, respectively. Results confirmed that the temperature sensitivity of PDC–SiCN-based pressure sensor decreased from 220.5 to 50.8 kHz/°C by PIP process.  相似文献   

17.
    
《Ceramics International》2022,48(14):20168-20175
To improve the electromagnetic (EM) wave absorption performance of rare earth silicate in harsh environments, this work synthesized dense SiC–Y2Si2O7 composite ceramics with excellent EM wave absorption properties by using the polymer permeation pyrolysis (PIP) process, which introduced carbon and SiC into a porous Y2Si2O7 matrix to form novel composite ceramics. SiC–Y2Si2O7 composite ceramics with different numbers of PIP cycles were tested and analysed. The results show that the as-prepared composites exhibit different microstructures, porosities, dielectric properties and EM wave absorption properties. On the whole, the SiC–Y2Si2O7 composite ceramics (with a SiC/C content of 29.88 wt%) show superior microwave absorption properties. The minimum reflection loss (RLmin) reaches ?16.1 dB when the thickness is 3.9 mm at 9.8 GHz. Moreover, the effective absorption bandwidth (EAB) included a broad frequency from 8.2 GHz to 12.4 GHz as the absorbent thickness varied from 3.15 mm to 4.6 mm. In addition, the EM wave absorption mechanism was analysed profoundly, which ascribed to the multiple mediums of nanocrystalline, amorphous phases and turbostratic carbon distributed in the Y2Si2O7 matrix. Therefore, SiC–Y2Si2O7 composite ceramics with high-efficiency EM wave absorption performance promise to be a novel wave absorbing material for applications in harsh environments.  相似文献   

18.
Tape casting has been applied to produce porous hybrid and SiOC ceramic tapes using ceramic precursors and commercially available polysiloxanes as polymeric binders. SiC particles of two different mean sizes (4.5 or 6.5?μm) were used as inert fillers to prevent shrinkage and increase mechanical stability. Macroporosity was adjusted by varying the azodicarbonamide (ADA) content from 0 to 30?wt.%. Decomposition of the polysiloxanes at 600?°C resulted in the generation of micropores with high specific surface area (187–267 m2?g?1) and a predominant hydrophobic behavior. At 1000?°C mainly meso/macroporosity were observed (SSA: 32–162 m2?g?1) accompanied by increased hydrophilicity. The influence of ADA content, SiC size, and pyrolysis temperature on open porosity (2.5–37%), average pore size (<0.01–1.76?μm), surface characteristics, and flexural strength (10.5–121?MPa) were investigated. The porous tapes with different surface characteristics and controlled structure are highly promising for applications involving membrane processes, particularly microfiltration systems (0.1–10?μm).  相似文献   

19.
    
Polymer-derived ceramic (PDC) route has been widely used to fabricate various ceramics or ceramic-matrix composites in recent years. However, the synthesis of high-entropy ceramics via PDC route has rarely been reported until now. Herein, we successfully synthesized a class of high-entropy carbides, namely (Hf0.25Nb0.25Zr0.25Ti0.25)C (HEC-1), via PDC route. The polymer-derived HEC-1 ceramics consisted of numerous superfine particles with the average particle size ~800 nm. Meanwhile, they possessed a rock-salt structure of metal carbides and high-compositional uniformity from nanoscale to microscale. In addition, the as-obtained HEC-1 ceramics had a low oxygen impurity content of 0.51% and a low free carbon impurity content of 2.56%. This work will open up a new research field on the fabrication of high-entropy ceramics or high-entropy ceramic-matrix composites via PDC route.  相似文献   

20.
Both the generation of a microporous structure and char formation kinetics have been studied in the pyrolysis of sawdust of Pinus insignis in a conical spouted bed reactor, in the range 350–700 °C. The BET surface area (representative of the physical evolution of the solid) and the C/H ratio of the solid (representative of the chemical structural change) have been taken as conversion indices. From the measurement of the C/H ratio of the solid (the more significant variable), it has been determined that the reaction order is 0.5 and that the kinetic constant is between 0.18 min−1 at 350 °C and 1.26 min−1 at 700 °C. However the value of the constant is almost independent of temperature, at 1 min−1 in the range 500–700 °C. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号