首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A CaO-Bi2O3-Al2O3-B2O3 glass system was studied as a sealant for sodium-sulfur battery. The thermal properties such as thermal expansion coefficient, glass transition, and softening temperature were determined by dilatometry and differential scanning calorimetry. Selected glasses, based on the thermal properties, were bonded with α-alumina substrate followed by aging in air at 400°C for 100 hours and in sodium vapor at 350°C for 100 hours. The interfacial compatibility and resistance to sodium vapor corrosion of the bonded and aged samples were evaluated by structural and microstructural analysis using X-ray diffractometer (XRD) and scanning electron microscope (SEM) attached with energy dispersive spectroscope (EDS). Helium leakage test was performed at room temperature to examine the sealing ability of the select glass. It is found that Bi2O3 increases the thermal expansion coefficient, decreases the glass transition and softening temperature, shows excellent interfacial compatibility and thermal cycling resistance, improves sealing ability, and degrades sodium corrosion resistance.  相似文献   

2.
Crystallization, mechanical properties, and workability are all important for the commercialization and optimization of silicate glass compositions. However, the inter-relations of these properties as a function of glass composition have received little investigation. Soda-lime-silica glasses with Na2O-MgO-CaO-Al2O3-SiO2 compositions relevant to commercial glass manufacture were experimentally studied and multiple liquidus temperature and viscosity models were used to complement the experimental results. Liquidus temperatures of the fabricated glasses were measured by the temperature gradient technique, and Rietveld refinements were applied to X-Ray powder diffraction (XRD) data for devitrified glasses, enabling quantitative determination of the crystalline and amorphous fractions and the nature of the crystals. Structural properties were investigated by Raman spectroscopy. Acoustic echography, micro-Vicker's indentation, and single-edge-notched bend testing methods were used to measure Young's moduli, hardness, and fracture toughness, respectively. It is shown that it is possible to design lower-melting soda-lime-silica glass compositions without compromising their mechanical and crystallization properties. Unlike Young's modulus, brittleness is highly responsive to the composition in soda-lime-silica glasses, and notably low brittleness values can be obtained in glasses with compositions in the wollastonite primary phase field: an effect that is more pronounced in the silica primary phase field. The measured bulk crystal fractions of the glasses subjected to devitrification at the lowest possible industrial conditioning temperatures indicate that soda-lime-silica glass melts can be conditioned close to their liquidus temperatures within the compositional ranges of the primary phase fields of cristobalite, wollastonite, or their combinations.  相似文献   

3.
The article reports on the structural dependence of crystallization in Na2O–Al2O3–B2O3–P2O5–SiO2-based glasses over a broad compositional space. The structure of melt-quenched glasses has been investigated using 11B, 27Al, 29Si, and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, while the crystallization behavior has been followed using X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy. In general, the integration of phosphate into the sodium aluminoborosilicate network is mainly accomplished via the formation of Al–O–P and B–O–P linkages with the possibility of formation of Si–O–P linkages playing only a minor role. In terms of crystallization, at low concentrations (≤5 mol.%), P2O5 promotes the crystallization of nepheline (NaAlSiO4), while at higher concentrations (≥10 mol.%), it tends to suppress (completely or incompletely depending on the glass chemistry) the crystallization in glasses. When correlating the structure of glasses with their crystallization behavior, the MAS NMR results highlight the importance of the substitution/replacement of Si–O–Al linkages by Al–O–P, Si–O–B, and B–O–P linkages in the suppression of nepheline crystallization in glasses. The results have been discussed in the context of (1) the problem of nepheline crystallization in Hanford high-level waste glasses and (2) designing vitreous waste forms for the immobilization of phosphate-rich dehalogenated Echem salt waste.  相似文献   

4.
The crystallization ability plays a key role in effecting thermal ability of sealing glass for intermediate temperature-solid oxide fuel cells (IT-SOFCs) to prevent fuel leakage during operation and insulate the cell stack from the external atmosphere. Herein, using differential thermal analysis (DTA) techniques, the growth mode of crystals precipitated in BaO-CaO-Al2O3-B2O3-SiO2 (BCABS) sealing glass through the heat treatment was calculated in terms of non-isothermal crystallization kinetics for the first time. The calculated results showed that the average kinetic exponent n of the glass was approximatively 1, indicating that the crystal nucleuses became to form and further grew with one-dimensional mode from the surface inwards. Scanning electron microscope (SEM) observations clearly revealed that a large number of one-dimensional filamentous crystals have been formed on the interface between the sealing glass and the electrolyte after the heat treatment at 973?K for 100?h, which perfectly coincided with the theoretical calculations, and the glass was well combined with the electrolyte without any visible cracks or peeling at the interface. The one-dimensional growth of hexagonal BaAl2Si2O8 crystals verified by X-ray diffraction (XRD) could effectively decelerate the decrease of thermal expansion coefficient of glass to ensure enhance the thermo-stability of the BCABS sealing glass for IT-SOFC.  相似文献   

5.
The crystallization behaviors of As–Se–Bi chalcogenide glasses were investigated by differential scanning calorimetry (DSC) and X‐ray diffraction (XRD). Three models were used to study the glass transition behavior and the activation energy. Results showed thermal stability of glass against crystallization decreased with Bi addition in As–Se–Bi system. The mechanism of crystal growth in glasses was also studied by the Avrami exponent n. For B0, B2.5, and B5, n values are 3.12, 1.59, and 2.21 (low temperature) and 4.61 (high temperature), respectively. The thermal stability of glass is in good agreement with glass network structure. It was found that glass network structures closely associated with the Bi content and As/Se ratio were studied by X‐ray diffraction and Raman spectroscopy. And the different ratios lead to the change in Bi2Se3 crystalline orientation.  相似文献   

6.
Gallium-rich heavy metal oxide glasses have become highly attractive optical materials since they exhibit a wide transparency window spanning from the ultraviolet ∼270 nm up to the mid-infrared (IR) region ∼6 μm making them promising for a future integration in optical fiber devices. Nonetheless, in most composition, surface crystallization is a key limiting factor for optical fiber drawing using the classical preform-to-fiber method. Herein, taking advantage of structural information from vibrational spectroscopies (Raman/IR) and 71Ga Solid-State Nuclear Magnetic Resonance, we describe the key role of lanthanum and yttrium rare—earth elements on the glass structure and their impact on the capability to draw those new glass compositions into optical fibers. This approach emphasizes that yttrium ions as compared with lanthanum ones favor the glass disorder, increasing significantly the fraction of GaO5 units with respect to GaO4. That, combined with thermal analysis and examination of the crystallization behaviors, highlights that Y2O3 prevents the glass devitrification during the glass shaping. The smaller yttrium radius is believed to be the key physical parameter preventing the precipitation of the BayGa5-yGey+1La3-yO14 (y = 0, 1, 2, 3) langasite-type crystal phase. This study remains particularly relevant and opens up the way for the development of highly robust power scaled fiber devices operating from the visible up to the challenging mid-IR domain.  相似文献   

7.
Niobium alkali germanate glasses were synthesized by the melt‐quenching technique. The ternary system (90‐x)GeO2xNb2O5–10K2O forms homogeneous glasses with x ranging from 0 to 20 mol%. Samples were investigated by DSC and XRD analysis, FTIR and Raman spectroscopy, and optical absorption. Structural and physical features are discussed in terms of Nb2O5 content. The niobium content increase in the glass network strongly modifies the thermal, structural and optical properties of alkali germanate glasses. DSC, Raman and FTIR analysis suggest niobium addition promotes NbO6 groups insertion close to GeO4 units of the glass network. XRD analysis also pointed out that samples containing high niobium oxide contents exhibit preferential niobium oxide‐rich phase after crystallization after heat treatment, which is similar to orthorhombic Nb2O5. Absorption spectra revealed high transmission range between 400 nm to 6.2 μm, added to a considerably decreased hydroxyl group content as the addition of niobium in the alkali germanate network. The niobium oxide‐rich phase crystallization process was studied and activation energy was determined, as well as nucleation and crystal growth temperatures and time for obtaining transparent glass‐ceramics.  相似文献   

8.
《Ceramics International》2021,47(23):32867-32873
Foamed glass preparation is a complex combination of reactions, greatly influenced by the composition of the used glass and often hindered by simultaneous crystallization. The crystallization phenomenon is undesirable in foamed glass production since it decreases the quality of the final product. In this work the influence of different types of additives (foaming agents, flux agents, crystallization inhibitors and nucleating agent) on the crystallization of waste container glass and properties of the sintered samples (density and thermal conductivity) was studied. Results of our study confirmed partial crystallization during sintering stage. We found that waste container glass manifests complex crystallization with the formation of four main crystalline phases, which can be inhibited with the addition of fluxing agents (B2O3 and borax). Moreover, here we show that prevention of the crystallization can lead to a significant decrease of the thermal conductivity.  相似文献   

9.
The glass transition temperature (Tg), crystallization, and melting character of a class of random polyester ionomers (polymer containing < 10 mol % ionic groups) were investigated. The nonlinear change of the Tg and crystallization and melting behavior were characterized using differential scanning colorimetry (DSC). The ionomers are derived from polyethylene terephathalate (PET) modified through copolycondensation with a fully neutralized sulfonate moiety (sodiosulfo) isophthalate (Na‐SIP). Significant and systematic changes in the glass transition temperature and thermal characteristics upon addition of Na‐SIP on the PET backbone were observed, indicating strong association and interaction on the ionic species. At Na‐SIP levels ≥ 4 mol %, the turn of the the glass transition temperature was found, and the same results were obtained for the samples treated either by quenching or dissolution, suggesting the presence of reversible crosslink and aggregation of the ionic species within the organic matrix. When crystallized from the healing or cooling the samples during the DSC nonisothermal crystallization run at a 10°C/min, the enthalpy of the cold crystallization and melting showed an obvious decrease with the increase of Na‐SIP content, and changes of the crystal temperature had an analogy to those of the Tg. A tune of the crystal temperature was found at Na‐SIP levels ≥ 3 mol % (see Figs. 4 , 5 , and 7 ). The experimental data were discussed in the context of the restricted mobility model of the aggregation in the ionomers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3660–3666, 2002  相似文献   

10.
For fiber‐optic mid‐infrared bio‐ and chemical‐sensing, Ge–Sb–Se glass optical fibers are more attractive than Ge–As–Se because of: (i) lowered toxicity and (ii) lower phonon energy and hence transmission to longer wavelengths, with potential to reach the spectral “fingerprint region” for molecular sensing. There is little previous work on Ge–Sb–Se fibers. Here, fibers are fabricated from two glass compositions in the GexSb10Se90?x atomic (at.) % series. Both glass compositions are of similar mean‐coordination‐number, lying in the overconstrained region, yet of different chemical composition: stoichiometric Ge25Sb10Se65 at. % and non‐stoichiometric Ge20Sb10Se70 at. %. Thermal analysis on bulk glasses has previously shown that the former exhibited the maximum glass stability of the series. However, during fiber‐drawing of Ge25Sb10Se65 at. %, the preform tip is found to undergo surface‐devitrification to monoclinic GeSe2 alone, the primary phase, no matter if the preform is an annealed, as‐melted rod or annealed, extruded rod. The heating rate of the preform‐tip to the fiber‐drawing temperature is estimated to be up to ~100°C/min to ~490°C. Lower heating rates of 10°C/min using thermal analysis, in contrast, encourage crystallization of both Sb2Se3 and GeSe2. The non‐stoichiometric: Ge20Sb10Se70 at. % composition drew successfully to low optical loss fiber, no matter whether the preform was an annealed, as‐melted rod or annealed, extruded rod.  相似文献   

11.
The structure of mold flux glasses in the system CaO-(Na,Li)2O-SiO2-CaF2 with unusually high modifier contents, stabilized by the addition of ∼4 mol% B2O3, is studied using 7Li, 23Na, 19F, 11B, and 29Si magic-angle-spinning (MAS), and 7Li{19F} and 23Na{19F} rotational echo double-resonance (REDOR) nuclear magnetic resonance (NMR) spectroscopy. When taken together, the spectroscopic results indicate that the structure of these glasses consists primarily of dimeric [Si2O7]−6 units that are linked to the (Ca,Na,Li)-O coordination polyhedra, and are interspersed with chains of corner-shared BO3 units. The F atoms in the structure are exclusively bonded to Ca atoms, forming Ca(O,F)n coordination polyhedra. This structural scenario is shown to be consistent with the crystallization of cuspidine (3CaO·2SiO2·CaF2) from the parent melts on slow supercooling. The progressive addition of Li to a Na-containing base composition results in a corresponding increase in the undercooling required for the nucleation of cuspidine in the melt, which is attributed to the frustrated local structure caused by the mixing of alkali ions.  相似文献   

12.
Thermal poling processes can be used to form modified surface layers on glass that, under ion-blocking electrode conditions, are depleted of virtually all network-modifying cations relative to the network-forming species. During this process, many outstanding questions remain as to the structure of these layers and how it may vary between glasses of different “parent” composition, with important implications for resultant surface properties and industrial applications of this technology. This phenomenon of depleting modifiers is particularly difficult to rationalize in aluminosilicate glass compositions, where—in the parent glass—aluminum ions are predominantly present as cation-charge-compensated [AlO4] tetrahedra prior to poling. Here, we present results of a detailed investigation into the surface depletion layers formed across a wide range of ternary sodium aluminosilicate (NAS) glasses, applying a host of surface-sensitive spectroscopy methods to directly interrogate the resulting composition and structure within the Na-depleted, anode-side surface layers. The desired depletion layers were successfully formed on all of the NAS glasses attempted, all showing (a) near-complete depletion of alkali within 300-500 nm-thick layers on the anode-side surfaces, (b) thin zones of Al depletion with the Na-depleted layer, and (c) the absence of injected H+ ions that could serve as an alternative charge-compensation mechanism. These data essentially confirmed a true binary Al2O3–SiO2 composition inside the depletion layers. However, no significant structural dependence was found as a function of parent glass, where initial compositions ranged from peralkaline to charge-balanced. Importantly, TEM imaging showed the depletion layers to be fully amorphous and homogeneous (not phase-separated) at the nanoscale, despite final compositions in the range of 5-33 mol% Al2O3—a composition space notoriously prone to phase-separation if prepared by conventional melting. Within the depletion layers, ELNES and TEY-XANES evidence is shown for retention of Al in a 4-coordinated state, along with XPS data indicating elimination of non-bridging oxygen. Taken as a whole, our results indicate a highly-connected aluminosilicate network, most likely with a relatively high concentration of 3-coordinated oxygen—or O “triclusters”—as a plausible means of charge-compensating 4-coordinated Al in the absence of Na+ or H+. The combined results of this work provide convincing new evidence for unique glass structures within the depletion layers not achievable through analogous melt pathways, with important implications for surface properties.  相似文献   

13.
The structure, morphology and non-isothermal crystallization behavior of polypropylene catalloys (PP-cats) as well as pure polypropylene were investigated via differential scanning calorimeter (DSC), wide angle X-ray diffraction (WAXD) and real-time hot-stage optical microscopy (OM). The results reveal that the crystalline structures of PP-cats change with variations of the crystallization conditions and composition. The crystalline phase might consist of α-PP, β-PP and PE crystals. The content of β-PP increases with the increase of EP copolymer content and the cooling rate. At lower cooling rates, the morphologies of all non-isothermal crystallized PP-cats show spherulitic structure, and the decrease of crystal perfection and the increase of nucleation density of PP-cats system could be evidently observed. Considering the compositions of PP-cats, these indicated that the interactions between propylene homopolymer and the ethylene-propylene copolymers (both random and block ones) are in favor of the enhancement of the nucleation ability of α-form as well as β-form. In comparison with pure PP, the overall crystallization rates of the PP-cats increase dramatically, while the growth rates of the spherulites in all PP-cats decrease distinctly under the given cooling conditions. These experimental results were explained on the basis of diluting effect and obstructing effect on the mobility of PP chains in the ethylene-propylene copolymer.  相似文献   

14.
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (CTE), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.  相似文献   

15.
Lithium and sodium aluminosilicates are important glass‐forming systems for commercial glass‐ceramics, as well as being important model systems for ion transport in battery studies. In addition, uncontrolled crystallization of LiAlSiO4 (eucryptite) in high‐Li2O compositions, analogous to the more well‐known problem of NaAlSiO4 (nepheline) crystallization, can cause concerns for long‐term chemical durability in nuclear waste glasses. To study the relationships between glass structure and crystallization, nine glasses were synthesized in the LixNa1‐xAlSiO4 series, from x = 0 to x = 1. Raman spectra, nuclear magnetic resonance (NMR) spectroscopy (Li‐7, Na‐23, Al‐27, Si‐29), and X‐ray diffraction were used to study the quenched and heat‐treated glasses. It was found that different LiAlSiO4 and NaAlSiO4 crystal phases crystallize from the glass depending on the Li/Na ratio. Raman and NMR spectra of quenched glasses suggest similar structures regardless of alkali substitution. Li‐7 and Na‐23 NMR spectra of the glass‐ceramics near the endmember compositions show evidence of several differentiable sites distinct from known LixNa1‐xAlSiO4 crystalline phases, suggesting that these measurements can reveal subtle chemical environment differences in mixed‐alkali systems, similar to what has been observed for zeolites.  相似文献   

16.
Glasses in the 30La2O3-40TiO2-30Nb2O5 system are known to have excellent optical properties such as refractive indices over 2.25 and wide transmittance within the visible to mid-infrared (MIR) region. However, titanoniobate glasses also tend to crystallize easily, significantly limiting their applications in optical glasses due to processing challenges. Therefore, the 30La2O3-40TiO2-(30−x) Nb2O5-xAl2O3 (LTNA) glass system was successfully synthesized using a aerodynamic containerless technique, which improves glass thermal stability and expands the glass-forming region. The effects of Al2O3 on the structure, thermal, and optical properties of base composition glasses were investigated by XRD, DSC, NMR, Raman spectroscopy, and optical measurements. DSC results indicated that as the content of Al2O3 increased, the thermal stability of the glasses and glass-forming ability increased, as the 30La2O3-40TiO2-25Nb2O5-5Al2O3 (Nb-Al-5) glass obtained the highest ΔT value (103.5°C). Structural analysis indicates that the proportion of [AlO4] units increases gradually and participates in the glass network structure to increase connectivity, promoting more oxygen to become bridging oxygen and form [AlO4] tetrahedral linkages to [TiO5] and [NbO6] groups. The refractive index values of amorphous glasses remained above 2.1 upon Al2O3 substitution, and a transmittance exceeding 65% in the visible and mid-infrared range. The crystallization activation energies of 30La2O3-40TiO2-30Nb2O5 (Nb-Al-0) and Nb-Al-5 glasses were calculated to be 611.7 and 561.4 kJ/mol, and the Avrami parameters are 5.28 and 4.96, respectively. These results are useful to design new optical glass with good thermal stability, high refractive index and low wavelength dispersion for optical applications such as lenses, endoscopes, mini size lasers, and optical couplers.  相似文献   

17.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   

18.
《Ceramics International》2016,42(16):18368-18372
Thermal properties of the synthesized rubidium and cesium borosilicate glasses have been studied by differential scanning calorimetry. The values of glass transition temperature (Tg) and crystallization temperature (Tc) have been determined, the characteristic features of crystallization process have been established at various heat treatment conditions. Glass crystallization products have been characterized by powder X-ray diffraction. Information on the properties of the glasses makes it possible to correct the heat treatment parameters for glass-containing nuclear waste matrix materials.  相似文献   

19.
磷酸盐电子玻璃结构与化学稳定性的研究   总被引:1,自引:0,他引:1  
通过红外、拉曼光谱和XRD研究了ZnO-B2O3,-P2O5-RnOm封接玻璃中B2O3质量分数的变化引起的其玻璃态及结晶后的结构变化,分析了B2O3质量分数的变化对玻璃的化学稳定性、热膨胀系数等性质的影响.研究表明,随着B2O3质量分数的增加,玻璃中硼氧三角体[BO3]的数量增加,导致玻璃的化学稳定性和热膨胀系数下降.  相似文献   

20.
《Ceramics International》2022,48(13):18094-18107
The impact of the cation field strength (CFS) of the glass network-modifier cations on the structure and properties of borosilicate glasses (BS) were examined for a large ensemble of mixed-cation (R/2)M(2)O–(R/2)Na2O–B2O3KSiO2 glasses with M+ ={Li+, Na+, K+, Rb+} and M2+ ={Mg2+, Ca2+, Sr2+, Ba2+} from four series of {K, R} combinations of K = n(SiO2)/n(B2O3) = {2.0, 4.0} and R =[n(M(2)O) ?+ ?n(Na2O)]/n(B2O3) = {0.75, 2.1}. Combined with results from La3+ bearing glasses enabled the probing of physical-property variations across a wide CFS range, encompassing the glass transition temperature (Tg), density, molar volume and compactness, as well as the hardness (H) and Young's modulus (E). We discuss the inferred composition–structure/CFS–property relationships. Each of Tg, H, and E revealed a non-linear dependence against the CFS and a strong Tg/H correlation, where each property is maximized for the largest alkaline-earth metal cations, i.e., Sr2+ and Ba2+, along with the high-CFS La3+ species. The 11B MAS NMR-derived fractional BO4 populations decreased linearly with the average Mz+/Na+ CFS within both K–0.75 glass branches, whereas the NBO-rich K–2.1 glasses manifested more complex trends. Comparisons with results from RM2O–B2O3KSiO2 glasses suggested no significant “mixed alkali effect”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号