首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The article reports on the structural dependence of crystallization in Na2O–Al2O3–B2O3–P2O5–SiO2-based glasses over a broad compositional space. The structure of melt-quenched glasses has been investigated using 11B, 27Al, 29Si, and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, while the crystallization behavior has been followed using X-ray diffraction and scanning electron microscopy combined with energy dispersive spectroscopy. In general, the integration of phosphate into the sodium aluminoborosilicate network is mainly accomplished via the formation of Al–O–P and B–O–P linkages with the possibility of formation of Si–O–P linkages playing only a minor role. In terms of crystallization, at low concentrations (≤5 mol.%), P2O5 promotes the crystallization of nepheline (NaAlSiO4), while at higher concentrations (≥10 mol.%), it tends to suppress (completely or incompletely depending on the glass chemistry) the crystallization in glasses. When correlating the structure of glasses with their crystallization behavior, the MAS NMR results highlight the importance of the substitution/replacement of Si–O–Al linkages by Al–O–P, Si–O–B, and B–O–P linkages in the suppression of nepheline crystallization in glasses. The results have been discussed in the context of (1) the problem of nepheline crystallization in Hanford high-level waste glasses and (2) designing vitreous waste forms for the immobilization of phosphate-rich dehalogenated Echem salt waste.  相似文献   

2.
Transformation of electrical transport from ionic to polaronic in glasses, which are a potential class of new cathode materials, has been investigated in four series containing WO3/MoO3 and Li+/Na+ ions, namely: xWO3–(30?0.5x)Li2O–(30?0.5x)ZnO–40P2O5, xWO3–(30?0.5x)Na2O–(30.5x)ZnO–40P2O5, xMoO3–(30?0.5x)Li2O–(30?0.5x)ZnO–40P2O5, and xMoO3–(30?0.5x)Na2O–(30?0.5x)ZnO–40P2O5, 0 ≤ x ≤ 60, (mol%). This study reports a detailed analysis of the role of structural modifications and its implications on the origin of electrical transport in these mixed ionic‐polaron glasses. Raman spectra show the clustering of WO6 units by the formation of W–O–W bonds in glasses with high WO3 content while the coexistence of MoO4 and MoO6 units is evidenced in glasses containing MoO3 with no clustering of MoO6 octahedra. Consequently, DC conductivity of tungstate glasses with either Li+ or Na+ exhibits a transition from ionic to polaronic showing a minimum at about 20‐30 mol% of WO3 as a result of ion‐polaron interactions followed by a sharp increase for six orders of magnitude as WO3 content increases. The formation of WO6 clusters involved in W‐O‐W linkages for tungsten glasses plays a key role in significant increase in DC conductivity. On the other hand, DC conductivity is almost constant for glasses containing MoO3 suggesting an independent ionic and polaronic transport pathways for glasses containing 10‐50 mol% of MoO3.  相似文献   

3.
The influence of Nb2O5 on the structure and ionic conductivity of potassium phosphate glasses was investigated in glasses with composition xNb2O5–(100-x)[0.45K2O–0.55P2O5], x = 10–47 mol%. The Raman spectra of glasses reveal a transition from predominantly orthophosphate to predominantly niobate glass network with increasing Nb2O5 content. In the glass structure, niobium forms NbO6 octahedra which are interlinked with phosphate units for the glass containing 10 mol% Nb2O5, but for higher Nb2O5 content they become mutually interconnected via Nb-O-Nb bonds. The transport of potassium ions was found to be strongly dependent on the structural characteristics of the glass network. While the mixed niobate-phosphate glass network hinders the diffusion of potassium ions by providing traps that immobilize them and/or by blocking the conduction pathways, predominantly niobate glass network exhibits a rather facilitating effect which is evidenced in the trend of DC conductivity as well as in the features of the frequency-dependent conductivity and typical hopping lengths of potassium ions.  相似文献   

4.
A series of glasses with compositions of 20Na2O–30Nb2O5–(5?y?z)Al2O3–30P2O5–(15?x)TiO2xGeO2yEr2O3zYb2O3, where x = (0; 5; 10; 15), y = (0; 1), z = (0; 2) mol%, were investigated with respect to their structural, optical, and luminescence properties. The coordination of the germanium(IV) ion is normally reported as being mainly tetrahedral. However, results of this study suggest that the germanium(IV) ion may have an octahedral coordination and that TiO2 is substituted. This proposition can be done mainly by 31P MAS‐NMR spectroscopy, which spectra show predominantly pyrophosphate chains in the different glasses, without changes in their polymerization after substitution. A similar coordination of germanium can also be identified by the photoluminescence behavior of the different codoped samples, which shows similar erbium(III) emission decay lifetimes (5 ms), and Judd–Ofelt intensity parameters. It was found that the upconversion emission process involved 1.5 photons. Regarding the thermal behavior, it is noted that the glasses containing higher proportions of GeO2 exhibit higher thermal stability and are therefore more resistant to devitrification when compared to compositions containing more TiO2.  相似文献   

5.
The glass structure and photoluminescence of new oxyfluoride glasses with the composition of xMgF2–(66.7−2x/3)BaO–(33.3−x/3)B2O3 (= 10-50 mol%) were investigated in this work. The structure of the glasses was investigated by magic-angle spinning NMR, XAS, and Raman scattering spectroscopies. It was revealed that the glasses are mainly composed of BO3 units with a disconnected borate network consisting mainly of ortho- and pyro-borate units, and ortho-borate increases with the addition of MgF2. The fluorine atoms are surrounded by Mg2+ and Ba2+ ions. The photoluminescence of Eu3+-doped samples were investigated. It was indicated that asymmetry of the Eu3+ site increased with the addition of MgF2. The photoluminescence quantum yield (η) of the glasses are very high and increased with MgF2 addition; red photoluminescence is observed with η = 82% for 10MgF2 and η = 98% for 50MgF2 for excitation at 393 nm.  相似文献   

6.
A series of glasses composed of xB2O3–8Al2O3‐(90?x)Na2O–R2O3 (x = 65, 70, 75, 80, 85; R = Dy3+, Tb3+, Sm3+) were prepared through melt‐quenching. Structural evolution was induced by varying the glass composition. Increasing the glass network former B2O3 enhanced the luminescence of rare‐earth ions, as observed in the emission spectra. The mechanism of the glass structural evolution was investigated by the NMR spectra analysis. The dispersant effect of the glass structure was believed to promote the better distribution of the rare‐earth ions in the matrix and reduced the concentration quenching between them. The relationship between the glass structure and its optical properties was established.  相似文献   

7.
We report on the individual roles of charge carrier density and network modification in sodium ion conducting glasses from the Na2O-P2O5-SO3-AlF3 (NAPFS) system. For this, a broad range of glass compositions was considered across the series of 44Na2O/(56 – x − y)P2O5/xAlF3/ySO3, 47Na2O/(53 − x − y)P2O5/xAlF3/ySO3, and 50Na2O/(50 − x − y)P2O5/xAlF3/ySO3, with x = 8, 12, 16, 20 and y = 0, 5, 7, 10, 12. Impedance spectroscopy was conducted on these glasses at frequencies from 10−2 to 106 Hz and over temperatures from 50 to 250°C, and complemented by structural analyses using Raman spectroscopy and nuclear magnetic resonance data. While the trends in dc conductivity and activation energy follow that of Na2O content (increasing from 44 to 50 mol%), substantial enhancement of conductivity (by about two orders of magnitude) and correspondingly lower activation energy were also found for constant Na2O concentration when adjusting SO3 or AlF3 within specific limits of glass structure.  相似文献   

8.
Sodium aluminophosphate glasses were evaluated for their bone repair ability. The glasses belonging to the system 45Na2O–xAl2O3‐(55‐x)P2O5, with = (3, 5, 7, 10 mol%) were prepared by a melt‐quenching method. We assessed the effect of Al2O3 content on the properties of Na2O–Al2O3–P2O5 (NAP) glasses, which were characterized by density measurements, DSC analyses, solubility, bioactivity in simulated body fluid and cytocompatibility with MG‐63 cells. To the best of our knowledge, this is the first investigation of calcium‐free Na2O–Al2O3–P2O5 system glasses as bioactive materials for bone tissue engineering.  相似文献   

9.
A detailed structural investigation of a series of phosphate laser glasses with composition xBi2O3yAl2O3–(100 − xy)NaPO3 (x = 0, 10; y = 0, 5, 10, 15, 20) has been conducted using solid-state nuclear magnetic resonance (NMR) techniques and X-ray photoelectron spectroscopy (XPS). 31P MAS NMR spectroscopy demonstrates that the addition of Bi2O3 and Al2O3 leads to the depolymerization of the phosphorus chain in the process of Q2 → Q1 → Q0. The various phosphorus species (Qn, n = 0, 1, 2) are identified by 31P single pulse, 31P{27Al} rotational echo adiabatic passage double resonance, 31P{27Al} J-coupling-based heteronuclear multiple-quantum coherence, and 1D refocused INADEQUATE experiments. The results of 23Na{31P}, 31P{23Na}, 27Al{31P} rotational echo double resonance, and XPS consistently confirm that Na+, Al3+, and Bi3+ ions are all bound by phosphorus tetrahedron [PO4]3−. No bond is formed between these glass modifiers. Based on the complementary evidence from previous experiments, comprehensive local structure models are developed for these Bi2O3–Al2O3–NaPO3 glasses.  相似文献   

10.
In this work, new glass compositions were prepared in the ternary system GeO2–K2O–Ta2O5. Potassium oxide was added to reach the complete melt of the starting mixture and two composition series were investigated: the first one with a constant K2O molar content of 10% in the ternary system (90–x)GeO2–10K2O–xTa2O5 and the second one with the same molar content of K2O and Ta2O5 in the ternary system (100–2x)GeO2xK2O–xTa2O5. Homogeneous and transparent glasses could be obtained between x = 0 and 20. X‐ray diffraction analyzes of samples with x = 25 identified orthorhombic Ta2O5 in the first series and an isostructure of K3.8Ge3Nb5O20.4 in the second series where it is assumed that Ta5+ ions are inserted in the Nb5+ sites. As one of our goal with these materials is related with the preparation of glass‐ceramics containing Ta2O5 nanocrystals, the first series has been selected for further characterizations. An increase in glass‐transition temperatures with increasing Ta2O5 content as well as an increase of the thermal stability from x = 0 to 10 has been identified by differential scanning calorimetry. For higher contents, crystallization events were identified. Fourier transform infrared and Raman spectroscopic characterizations allowed to point out the intermediary behavior of Ta2O5 in the vitreous network where TaO6 octahedra are inserted inside the germanate network with TaO6 clusters identified at higher Ta2O5 contents. Heat‐treated samples with high tantalum contents (x = 15 and 20) exhibit preferential precipitation of orthorhombic Ta2O5 with nanometric size, suggesting the possibility of obtaining transparent glass‐ceramics for optical applications.  相似文献   

11.
Phosphate-based glasses 45P2O5–30CaO–(25 ? x)Na2O–xMgO for different compositions of x = 0, 1, 2.5, 5 and 10 mol% were prepared using the normal melt quench technique. To study the influence of MgO on phosphate glasses, a series of experimental analyses such as ultrasonic velocities, differential thermal analysis, X-ray diffraction, energy-dispersive X-ray spectroscopy, pH measurements, Fourier transform infrared spectroscopy, scanning electron microscopy and in vitro studies were carried out in all the prepared glasses. A maxima in ultrasonic parameters at x = 2.5 mol% of MgO content and a further decrease in the same with the addition of MgO content were observed in all glasses. The observed results indicate that structural compactness of glass network took place up to 2.5 mol% of MgO (PCNM2.5), beyond which a loose packing of atoms led to structural softening in glass network. The results obtained from X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses in all glasses before and after in vitro studies revealed the existence of higher HAp-forming ability in PCNM2.5 glass.  相似文献   

12.
Borates and borosilicates are potential candidates for the design and development of glass formulations with important industrial and technological applications. A major challenge that retards the pace of development of borate/borosilicate based glasses using predictive modeling is the lack of reliable computational models to predict the structure-property relationships in these glasses over a wide compositional space. A major hindrance in this pursuit has been the complexity of boron-oxygen bonding due to which it has been difficult to develop adequate B–O interatomic potentials. In this article, we have evaluated the performance of three B–O interatomic potential models recently developed by Bauchy et al [J. Non-Cryst. Solids, 2018, 498, 294–304], Du et al [J. Am. Ceram. Soc. https://doi.org/10.1111/jace.16082 ] and Edèn et al [Phys. Chem. Chem. Phys., 2018, 20, 8192–8209] aiming to reproduce the short-to-medium range structures of sodium borosilicate glasses in the system 25 Na2O x B2O3 (75 − x) SiO2 (x = 0-75 mol%). To evaluate the different force fields, we have computed at the density functional theory level the NMR parameters of 11B, 23Na, and 29Si of the models generated with the three potentials and the simulated MAS NMR spectra compared with the experimental counterparts. It was observed that the rigid ionic models proposed by Bauchy and Du can both reliably reproduce the partitioning between BO3 and BO4 species of the investigated glasses, along with the local environment around sodium in the glass structure. However, they do not accurately reproduce the second coordination sphere of silicon ions and the Si–O–T (T = Si, B) and B-O-T distribution angles in the investigated compositional space which strongly affect the NMR parameters and final spectral shape. On the other hand, the core-shell parameterization model proposed by Edén underestimates the fraction of BO4 species of the glass with composition 25Na2O 18.4B2O3 56.6SiO2 but can accurately reproduce the shape of the 11B and 29Si MAS-NMR spectra of the glasses investigations due to the narrower B–O–T and Si-O-T bond angle distributions. Finally, the effect of the number of boron atoms (also distinguishing the BO3 and BO4 units) in the second coordination sphere of the network former cations on the NMR parameters have been evaluated.  相似文献   

13.
The effects of adding Nb2O5 on the physical properties and glass structure of two glass series derived from the 45S5 Bioglass® have been studied. The multinuclear 29Si, 31P, and 23Na solid‐state MAS NMR spectra of the glasses, Raman spectroscopy and the determination of some physical properties have generated insight into the structure of the glasses. The 29Si MAS NMR spectra suggest that Nb5+ ions create cross‐links between several oxygen sites, breaking Si–O–Si bonds to form a range of polyhedra [Nb(OM)6?y(OSi)y], where 1 ≤ y ≤ 5 and M = Na, Ca, or P. The Raman spectra show that the Nb–O–P bonds would occur in the terminal sites. Adding Nb2O5 significantly increases the density and the stability against devitrification, as indicated by ΔT(Tx ? Tg). Bioglass particle dispersions prepared by incorporating up to 1.3 mol% Nb2O5 by replacing P2O5 or up to 1.0 mol% Nb2O5 by replacing SiO2 in 45S5 Bioglass® using deionized water or solutions buffered with HEPES showed a significant increase in the pH during the early steps of the reaction, compared using the rate and magnitude during the earliest stages of BG45S5 dissolution.  相似文献   

14.
High hardness and high crack resistance are usually mutually exclusive in glass materials. Through the aerodynamic levitation and laser melting technique, we prepared a series of magnesium aluminosilicate glasses with a constant MgO content, and found a striking enhancement of both hardness and crack resistance with increasing Al2O3. The crack resistance of the magnesium aluminosilicate glass is about five times higher than that of the binary alumina-silica glass for the similar [Al]/([Al] + [Si]) molar ratio (around 0.6). For the selected magnesium aluminosilicate glass with R = 0.32, when subjected to isothermal treatment at 1283K, we observed a further drastic enhancement of both hardness and crack resistance by extending the heating time. Based on the structural analyses, we propose an atomic-scale model to explain the mechanism of synergetic enhancement in hardness and crack resistance for the magnesium aluminosilicate glasses and glass-ceramics.  相似文献   

15.
We examine the impact of the glass network-modifier cation field strength (CFS) on ion irradiation-induced mechanical property changes in borosilicate (BS) glasses for the ternary M2O–B2O3–SiO2 systems with M = {Na, K, Rb} and the quaternary [0.5M(2)O–0.5Na2O]–B2O3–SiO2 systems with M = {Li, Na, K, Rb Mg, Ca, Sr, Ba}. 11B nuclear magnetic resonance (NMR) experiments on the as-prepared BS glasses yielded the fractional population of four-coordinated B species (B[4]) out of all {B[3], B[4]} groups in the glass network, along with the fraction of B[4]–O–Si linkages out of all B[4]–O–Si/B bonds. Both parameters correlated linearly with the (average) CFS of the M+ and/or {M(2)+, Na+} cations. Both the nanoindentation-derived hardness and Young's modulus values of the glasses reduced upon their irradiation by Si2+ ions, with the property deterioration decreasing linearly with increasing Mz+ CFS, that is, for higher Mz+⋅⋅⋅O interaction strength. The irradiation damage of the glass network also increased linearly with the fraction of B[4]–O–Si linkages, which are the second weakest in the structure after the Mz+⋅⋅⋅O bonds. Our results underscore the advantages of employing BS glasses with high-CFS cations for enhancing the radiation resistance for nuclear waste storage.  相似文献   

16.
Ce3+-doped 20Gd2O3–20Al2O3–60SiO2 (GAS:xCe3+) glasses (x = 0.3, 0.7, 1.1, 1.5, 1.9 mol%) with Si3N4 as a reducing agent were prepared. The density of the glasses is around 4.2 g/cm3. With the increase in the Ce3+ concentration, both the photoluminescence (PL) and PL excitation peaks of GAS:xCe3+ glasses show a redshift because the 4f–5d energy levels of Ce3+ ions are narrowed. PL quantum yield and PL decay time of GAS:xCe3+ glasses are 28.32–50.59% and 43–64 ns, respectively. In addition, they both first increases and then decreases with the Ce3+ concentration increasing, reached the maximum when x = 1.1 mol%. The integrated X-ray excited luminescence (XEL) intensity of the GAS:1.1Ce3+ glass is 23.86% of that of Bi4Ge3O12 (BGO) crystal, and the light yield reaches 1200 ph/MeV with an energy resolution of 22.98% at 662 keV when exposed to γ-rays. The PL and XEL thermal activation energies of GAS:xCe3+ glasses are independent of Ce3+ ions concentration. Scintillating decay time of the glasses exhibits two components consisting of nanosecond and microsecond levels, and the scintillating decay time gradually decreases with the Ce3+ concentration increasing. The difference between PL and scintillating decay time is discussed regarding the different luminescent mechanisms.  相似文献   

17.
Phosphate-based glasses of composition xNa2O−(45+(10−x))CaO−45P2O5 with different Na2O, CaO (= 1, 5, 10, 15, and 20 mol%), and invariable P2O5 (45 mol%) contents were prepared using the rapid melt quench technique. The obtained thermal data from differential thermal analysis revealed a decline in glass transition (Tg) and crystallization (Tc) temperatures of glasses against the compositional changes. The inclusion of Na2O at the cost of CaO in the glass network led to a reduction in its thermal stability. The thermal treatment carried out on glasses helped to derive their glass-ceramic counterparts. The amorphous and crystalline features of samples were characterized using X-ray diffraction patterns. The crystalline species that emerged out of the calcium phosphate phases confirmed the dominance of Q1 and Q2 structural distributions in the investigated glass-ceramics. The obtained scanning electron micrographs and atomic force microscopic images confirmed the surface crystallization and textural modification of the samples after thermal treatment. The N2-adsorption–desorption studies explored the reduction of porous structures due to thermal treatment on the melt-driven glass surface. The measured elastic moduli and Vicker's hardness values of the glasses showed an increase after thermal treatment, which were reduced against the inclusion of alkali content in both glass and glass-ceramics.  相似文献   

18.
Lithium borate (LB) glasses and crystals with x = Li/(Li + B) = mole fraction of Li2O of 0.2–0.5 have been synthesized by the quenching method. The thermodynamics of these materials were analyzed by high-temperature oxide melt solution calorimetry. The formation enthalpies from oxides of glasses range from −33.6 to −67.3 kJ/mol and those of crystals range from −42.1 to −77.4 kJ/mol, where compositions are given on the basis of one mole of (Li2O + B2O3). The formation enthalpies of both glasses and crystals become more negative with increasing Li2O mole fraction up to 0.5. The enthalpies of formation of glasses can be fit over the entire composition range (0 < x < 1) by a quadratic polynomial). The vitrification enthalpies were derived for x = 0.2 to 0.5 and ranged from 8.5 to 17.6 kJ/mol. The main factors controlling energetics are the strongly exothermic acid–base reaction between the network former (B2O3) and the network modifier (Li2O) and the formation of tetrahedrally coordinated boron in the glasses and crystals.  相似文献   

19.
High performance ultra-low temperature co-fired ceramic (ULTCC) materials were prepared from CuO- MgO- ZnO- Al2O3- B2O3- Li2O glass-ceramics. The sintering behaviors, crystalline phase evolution, microstructure and dielectric properties, as well as their compatibility with Ag and Al electrodes, were investigated. With the suitable substitution of MgO for ZnO, the dielectric properties of glass-ceramics were improved. It is mainly associated with the fine microstructure, highly crystallinity, and decrease in tetrahedral distortion in the crystal lattice. All the glasses completed the densification at 575–600 °C, and ZnB4O7 is the only crystalline phase precipitated from the glasses. Moreover, the glass-ceramic with 1 wt% MgO sintered at 575 °C for 5 h, exhibited low relative permittivity ~ 7.1 and low dielectric loss ~ 6.40 × 10?4. And the glass-ceramic with 4 wt% MgO sintered at 600 °C for 5 h, also displayed low relative permittivity ~ 7.1 and low dielectric loss ~ 5.77 × 10?4. Both two glasses have good sintering compatibility with silver and aluminum electrodes, which provided high potential for ULTCC application.  相似文献   

20.
《Ceramics International》2022,48(9):12699-12711
The effect of variation of MgO (1.5, 4.5 and 7.5 mol%) content on glass structure, crystallization behavior, microstructure and mechanical properties in a Li2O–K2O–Na2O–CaO–MgO–ZrO2–Al2O3–P2O5–SiO2 glass system has been reported here. Increased amount of MgO enhanced the participation of Al2O3 as a glass network former along with [SiO4] tetrahedra, reducing the amount of non-bridging oxygen (NBO) and increasing bridging oxygen (BO) amount in glass. The increased BO in glass resulted in a polymerized glass structure which suppressed the crystallization and subsequently increased the crystallization temperature, bulk density, nano hardness, elastic modulus in the glasses as well as the corresponding glass-ceramics. MgO addition caused phase separation in higher MgO (7.5 mol%) containing glass system which resulted in larger crystals. The nano hardness (~10 GPa) and elastic modulus (~127 GPa) values were found to be on a much higher side in 7.5 mol% MgO containing glass-ceramics as compared to lower MgO containing glass-ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号