首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents a systematic study of the shear properties of a potassium-based geopolymer reinforced with distinct types of fibers. Chopped basalt reinforcements in lengths from 3 mm up to 50 mm and 13 μm in diameter were compared with thicker 20-mm length, basalt mini bars, sand-coated basalt mini rods, and steel fibers. The samples were tested under a V-notched rail shear tests (ASTM D7078), coupled with optical measurements, namely, digital image correlation, allowing a novel study of their crack patterns and failure modes under shear loading. In general, the use of chopped fibers resulted in shear strengths of up to 9 MPa and shear moduli of 4.3 GPa, with no significant variation with fiber length increments, neither in shear stress nor strain at peak load (0.1%). Mini bars and steel fiber reinforcements resulted in slightly lower shear stresses of 7.1 and 8.4 MPa, respectively. They exhibited greater strain values at peak loads, up to 2.1% which were attributed to fiber-matrix enhanced adhesions, thereby allowing gradual debonding and increased ductility. This effect was also recorded for mini rods, but at much lower strength levels, which did not contribute to their multiple cracking capacities. The alignment of the mini rods in 45° directions resulted in a 50% increase in shear stress, showing the feasibility of tailoring the manufacturing process to attend to distinct demands.  相似文献   

2.
Geopolymer composites containing refractory, chopped basalt fibers and low-melting glass were made and systematically heat-treated at higher temperatures. Potassium-based geopolymer of stoichiometric composition K2O·Al2O3·4SiO2·11H2O was produced by high shear mixing from fumed silica, deionized water, potassium hydroxide, (i.e., water glass) and metakaolin. With the addition of low-melting glass (Tm ~815°C) the flexure strengths of the composites increased to ~6 MPa after heat treatment above 900°C to 1100°C. A Weibull statistical analysis was performed showing how the amorphous self-healing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after high-temperature exposure. At temperatures up to 900°C, the geopolymer-basalt composite remained amorphous and the low-melting glass frit flowed into the dehydration cracks in the geopolymer matrix. This type of composite could be described as amorphous self-healed geopolymer (ASH-G). At ~1000°C, the geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed and sealed the cracks developed at that temperature. This type of composite could then be described as amorphous self-healed ceramic (ASH-C). A temperature of 1150°C was determined to be optimum as at 1200°C the basalt fibers melted and the strength of the reinforcement was lost in the composites. The amorphous self-healing effect of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer-based composites.  相似文献   

3.
This work presents a novel experimental study on the use of auxetic fabrics as the main reinforcement in geopolymer composites, aiming at higher energy dissipation in impact demanding applications. For this, a potassium-based geopolymer was reinforced with an auxetic fabric consisting of basalt fiber fillings positioned between helical auxetic yarns (HAY) made of a thermoplastic polyester core, and a stiffer liquid-crystal polymer wrap, which dispersed the load demands into several single elements having different capabilities. The composites were investigated under quasi-static flexural and tensile loadings, in both longitudinal and transverse directions. The latter showed increased mechanical strengths, up to 26 MPa in tension, and 12.8 MPa in flexural strength. Each fiber portion was tested in tension separately, reaching flexible (core) and stiffer (wrap and basalt) responses, whereas HAYs displayed combined performances due to a suitable auxeticity effect, that is, a negative Poisson's ratio. The pullout investigation justified the cracking and delamination of the composites, due to its cyclic lateral area modification, which created a load demand much higher than what the brittle geopolymer can sustain in this type of solicitation. Thermogravimetric analyses helped to predict the use of such configurations under thermal exposure, pointing out that the geopolymer material could be a suitable thermal barrier to prevent sudden degradation of the fabric under these conditions.  相似文献   

4.
Geopolymers are porous, amorphous, alkali-aluminosilicate hydrate materials formed at room temperature via a solution process. Geopolymer based on metakaolin had a relatively homogeneous microstructure that offered consistent behavior but suffered from dehydration cracking and large densification shrinkages when heated. It was found that by reinforcing a metakaolin geopolymer of composition (K2O·Al2O3·4SiO2·11H2O) with 50 µm diameter alumina platelets, dehydration cracking could be prevented, and shrinkage could be reduced by an order of magnitude. Samples were reinforced with 30, 50, and 70 wt% of alumina platelets. Although the properties of the 30 and 50 wt% conditions were better than those of unreinforced geopolymer, those samples still showed warping, cracking, and strength losses on heating. The 70 wt% samples did not warp or crack when heated to temperatures of up to 1500°C. The room-temperature 4-point flexural strength of these samples remained at around 20 MPa regardless of heat treatments. The in situ measured flexural strength increased to almost 40 MPa at 600°C, and remained higher than 20 MPa until 1200°C. Samples subjected to propane-torch thermal shock heating and subsequent quenching did not crack or fragment. Dilatometry, X-ray diffraction, and scanning electron microscopy were used for additional characterization. Given these properties, this material showed promise as a castable refractory.  相似文献   

5.
C/HfC-ZrC-SiC composites were fabricated via reactive melt infiltration (RMI) of the mixed HfSi2 and ZrSi2 alloys. The microstructure, infiltration behavior of the hybrid silicide alloys infiltrating C/C composites, and flexural strength of C/HfC-ZrC-SiC composites was studied. Inside composites, there were more Hf-rich (Hf, Zr)C phases distributed in the exterior region, while more SiC and Zr-rich (Zr, Hf)Si2 in the interior region. There was compositional segregation in (Hf, Zr)C, with the HfC content decreasing from the exterior region to interior region. The RMI process was performed at different temperatures to investigate the structural evolution, and a model for the reactive melt infiltration of the mixed HfSi2 and ZrSi2 alloys into C/C composites was established. Compared with C/HfC-SiC and C/ZrC-SiC prepared by same process, C/HfC-ZrC-SiC had the highest flexural strength of 247Mpa and 213Mpa after oxidation at 1200 ℃ for 15 min. Both the unoxidized and oxidized samples presented a pseudo-plastic fracture behavior.  相似文献   

6.
《Ceramics International》2023,49(18):29391-29399
C/C-ZrC-SiC composites were prepared by chemical vapor infiltration (CVI) and molten salt assisted reactive melt infiltration (RMI). The microstructure of low density and high density C/C composites without graphitization (LC/HC) and graphitization at 2000 °C (LCG/HCG) were compared. Moreover, the effects of graphitization of LC and HC on the microstructure and flexural strength of C/C-ZrC-SiC composites were investigated in detail. The composites prepared by infiltration of LC and LCG had lower flexural strength, 220.01 ± 21.18 MPa and 197.94 ± 19.05 MPa, respectively. However, the composites prepared by HC and HCG presented higher flexural strength, 308.76 ± 12.35 MPa and 289.62 ± 8.70 MPa, respectively. This was due to the phenomenon of fiber erosion in both LC and LCG during the RMI process. After graphitization, the flexural strength of C/C-ZrC-SiC composites prepared by RMI decreased, but the fracture behavior of the composites tends to be more mild. The decreased strength of the composites were caused by the increased matrix cracks, fiber damage in high temperature and the weak interfacial bonding. The improve of failure behavior of the composites was due to interface debonding between the fiber and matrix, and composites can consume the fracture energy through fiber pull-out.  相似文献   

7.
《Ceramics International》2017,43(18):16063-16069
Our previous research paper on geopolymer-mullite composites showed promising results on compressive strength and fire resistance. However, no improvement in thermal shock resistance was observed in the afore mentioned study. In this study, further attempts to improve thermal shock resistance of the geopolymer were explored. The research was performed by compositing a fly ash-based geopolymer with cordierite-mullite at 20, 40 and 60 wt% replacement. X-ray diffraction (XRD) of the cured geopolymer composite specimens showed the existence of cordierite, mullite, quartz, cancrinite and lazurite. It was found that compressive strength and strength retention after thermal exposure at 400 °C were improved in the geopolymer composite specimens, especially those with 20–40 wt% replacement. Upon further heating to 600 °C, all geopolymer specimens showed insignificant differences in compressive strength. Fire resistance was found to improve with increasing proportion of replacement contents.  相似文献   

8.
In this study, SiC whiskers (SCWS) reinforced geopolymer composites (SCWS/KGP) and their ceramic products (SCWS/leucite) were prepared, and effects of SiC whiskers contents on the microstructure and flexural strength of the SCWS/KGP and SCWS/leucite composites were investigated. The results show that the whisker addition has little influence on both phase composition and thermal shrinkage of the KGP composites, but a suitable content of whisker will result in the improved flexural strength, and when the SCWS content is 2 wt%, flexural strength of the SCWS/KGP composite is enhanced by 95% compared with the neat geopolymer. The flexural strength of the composites can be further enhanced significantly after the composites being treated at 1100 °C and 1200 °C and flexural strength of the composite with SCWS content of 2 wt% was 107% and 125% higher than the untreated counterpart, respectively. The increase in flexural strength of the composites should be attributed to the strong leucite formation, whisker debonding and pulling out from matrix during the fracturing process based on the good interfacial bonding state between whisker and leucite matrix.  相似文献   

9.
Poly(vinylidene fluoride) (PVDF) composite films were prepared by introducing polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) into PVDF matrix. Uniform dispersion and good compatibility of PS-b-PMMA in matrix were observed, which was helpful for high breakdown strength (Eb). The composite film with 9 wt% PS-b-PMMA showed the maximum Eb of 522 kV/mm and the high discharged energy density (Ue) of 10.1 J/cm3, which were 1.7 times and 2.6 times higher than pure PVDF, respectively. Besides, a charged-discharged efficiency (η) of 88% was much higher than pure PVDF at 300 kV/mm, which was beneficial to energy storage.  相似文献   

10.
《Ceramics International》2016,42(5):6288-6295
In this study, ASTM Class C fly ash used as an alumino-silicate source was activated by metal alkali and cured at low temperature. Basalt fibers which have excellent physical and mechanical properties were added to fly ash-based geopolymers for 10–30% solid content to act as a reinforced material, and its influence on the compressive strength of geopolymer composites has been investigated. XRD study of synthesized geopolymers showed an amorphous phase of geopolymeric gel in the 2θ region of 23°–38° including calcium-silicate-hydrate (C-S-H) phase, some crystalline phases of magnesioferrite, and un-reacted quartz. The microstructure investigation illustrated fly ash particles and basalt fibers were embedded in a dense alumino-silicate matrix, though there was some un-reacted phase occurred. The compressive strength of fly ash-based geopolymer matrix without basalt fibers added samples aged 28 days was 35 MPa which significantly increased 37% when the 10 wt%. basalt fibers were added. However, the addition of basalt fibers from 15 to 30 wt% has not shown a major improvement in compressive strength. In addition, it was found that the compressive strength was strong relevant to the Ca/Si ratio and the C-S-H phase in the geopolymer matrix as high compressive strength was found in the samples with high Ca/Si ratio. It is suggested that basalt fibers are one of the potential candidates as reinforcements for geopolymer composites development.  相似文献   

11.
Lignocellulosic fibers obtained from the curaua (Ananas erectifolius) and malva (Malva sylvestris) plants in Brazil can be used as suitable reinforcements for geopolymers (GPs) owing to their high strength, ready regional availability, and low cost. In this work, the tensile and flexural strengths of untreated and NaOH alkali-treated curaua and malva fiber-reinforced GP composites were measured according to ASTM standards. Curaua reinforced GP composites had an average tensile strength of 25.7 (±) 7.1 MPa and flexural strength of 18.9 (±) 4.72 MPa. Malva GP composites withstood 19.18 (±) 9.0 MPa in tension and 31.5 (±) 7.6 MPa in flexure. Additionally, pullout tests were performed to investigate the debonding mechanisms for both fibers, with and without alkaline treatment, finding increases in chemical bonding for the treated samples due to roughness enhancements through fiber surface modifications with alkali treatment. Thermogravimetric analysis and X-ray diffraction were used to characterize the physical fiber modifications after alkali treatment, evidencing lignin and hemicellulose removals. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to further examine the fiber–matrix interaction, with proofs of interfacial tailoring.  相似文献   

12.
《Ceramics International》2022,48(10):13634-13650
In this study, the effect of different factors, such as PVA fibers (2% by total volume) and precursor type (slag, fly ash, or a combination of both), on the behavior of green lightweight engineered geopolymer composites (LEGC) and lightweight engineered cementitious composites (LECC) after exposure to temperatures up to 800 °C for 1 h is investigated. Expanded glass granules were used as lightweight aggregate instead of silica sand to reduce the spalling tendency and density of the composite. The flowability, density, color change, mass loss, spalling resistance, residual mechanical properties (compressive strength, stress-strain diagram, tensile stress-strain diagram, load-deflection response, failure mode), and microstructural analysis (by scanning electron microscopy) were investigated before and after exposure to thermal deterioration. The findings pointed out that the dry density, compressive strength, fiber bridging stress, strain capacity, maximum load, and maximum deflection of the developed mixtures before exposure to fire deterioration were in the range of 1703–1883 kg/m3, 16.66–64.11 MPa, 2.66–4.97 MPa, 2.40–3.33%, 1573–4824 N, and 2.92–5.53 mm respectively. It's worth mentioning that the substitution of 50% slag in the lightweight EGC mixture demonstrated the optimal tensile strain capacity and deformation capacity and further enhanced both ultimate tensile strength and flexural strength of fly ash-based EGC (FA-EGC) mixtures. After heat exposure, both LEGC and LECC composites demonstrated strain hardening behavior and deflection hardening behavior up to 300 °C of heat treatment, while after exposure to a temperature of 300 °C and above, both deflection hardening behavior and strain hardening behavior are dramatically damaged. This is attributable to the melting of the PVA fibers. Also, the microstructural analysis showed that incorporating fly ash into lightweight EGC mixtures can effectively reduce the melting point of PVA fibers and further improve the fire resistance of EGC mixtures.  相似文献   

13.
《Ceramics International》2015,41(6):7872-7880
This paper reports the synthesis and characterization of a microporous geopolymer body based on metakaolin. Two kaolinites were used as the starting materials in conjunction with sodium silicate and sodium hydroxide and three sizes of polylactic acid (PLA) fibers (12, 20 and 29 µm diameter) were used as the pore-forming media. The microporous bodies were formed from geopolymer pastes of optimized composition by extrusion, which yielded bodies with reasonably well-aligned pore-forming fibers which were decomposed by the alkaline conditions during curing and drying of the bodies. XRD, FTIR, 27Al MAS NMR, and SEM were used to characterize the chemistry and microstructure of the porous products and their compressive strengths were also measured. The molar composition SiO2/Al2O3=4 was found to give the best geopolymer characteristics, while the optimal ratio Na2O/Al2O3 which affected the leachability of the PLA fibers and thus the size of the resulting pores, was optimized in the range 1.5–1.75 depending on the kaolinite. Water permeability measurements indicate that the use of PLA fibers as pore-formers significantly increases the permeability of the samples, while the maximum pore size of the porous bodies, determined by bubble point measurements, is related to the size of the particulate matter that could be retained, and indicates that their performance could be tailored for particular filtering applications by adjusting their synthesis parameters.  相似文献   

14.
Geopolymer powders and 3D-printed lattices have shown promising preliminary results as heterogeneous catalysts for the transesterification of vegetable oils to produce biodiesel. However, questions about the basicity of catalytic sites and the leaching characteristics of metals (K, Na) and hydroxyl groups in the reactional mixtures remained. The leaching of alkaline ions in methanol and biodiesel for powder and printed geopolymer formulations based on K, Na, or Na+K activators and treated at 110 to 700°C was investigated, as well as the physiochemical modifications of the materials. The Hammett indicators were used to determine base strength, and both leachable and total basicities were quantified. The amount of Na and K leached into the biodiesel phase was negligible (<1% wt.%). Methanol leaching reached a maximum of 29.3%. The base strength ranged between 11.0 and 18.4. Potassium-based geopolymer lattices presented the highest basicity, followed by sodium and sodium-potassium geopolymer catalysts. The basicity of all formulations decreased gradually as the calcination temperature increased. When compared to the homogeneous catalysts NaOH and KOH, the level of biodiesel contamination with Na and K is 81–93% lower. The findings support the heterogeneous nature of geopolymers as biodiesel catalysts and further validates their use for this application.  相似文献   

15.
In this communication, Al2O3‐20 wt% ZrO2 composites (ZTA) were prepared by a novel oscillatory pressure sintering (OPS) process. An almost perfectly full density of 99.94% and a relatively high flexural strength of 1145 MPa can be achieved for the OPS‐fabricated specimen, which were higher than those prepared by pressureless sintering (98.24% and 682 MPa) and hot pressing (99.53% and 990 MPa). The enhancement of flexural strength of the OPS‐fabricated specimen was correlated with its smaller flaw size and higher fracture surface energy. It was suggested that OPS was an effective approach to fabricate ZTA composites with ultrahigh density and high strength.  相似文献   

16.
《Ceramics International》2017,43(6):5283-5291
Cu-SiC composites are very promising materials which have high thermal and electrical conductivity and may find many applications. Unfortunately, the main disadvantage of these materials is the dissolution of silicon in copper at elevated temperature, which significantly reduces their properties. In order to overcome this problem particles can be coated with a protective material before sintering. In this paper– the influence of three different metallic coatings on bonding strength were investigated. SiC particles were coated with tungsten, chromium or titanium. As reference a material with uncoated particles was prepared. The experiments were carried out with the use of microtensile tester. The highest increase in strength was observed in the case of chromium coating. On the other hand, the titanium coating, which was of very poor quality, decrease the bonding strength in comparison with uncoated particles. Furthermore, scanning electron and optical microscopes were used to determine the mechanism of debonding.  相似文献   

17.
This article presents a comparison of the bond behaviour between palm oil fuel ash (POFA)-derived geopolymer and conventional cement-based normal weight and lightweight concretes. A total of 16 variables were tested, which includes concrete cover (50 and 100 mm), bar diameter (12 and 16 mm) and types of concrete (POFA-based geopolymer normal/ lightweight concrete and cement-based normal/lightweight concrete). Results showed that the bond strength of cement-based concretes had higher critical bond stress and ultimate bond strength as well as lower slip at the ultimate bond strength compared to the corresponding POFA-based geopolymer concretes. The cement-based and geopolymer lightweight concrete specimens also exhibited greater bond strength than the normal weight concrete specimens. All of the concrete specimens generally exhibited similar bond stress-slip curves. Besides that, bond strength models proposed in the past predicted satisfactory match (difference of up to 35%) to the experimental ultimate bond strength values in the case of cement-based normal weight concrete and geopolymer concrete whereas a difference in the range of 16–138% was found for the case of lightweight concrete.  相似文献   

18.
《Ceramics International》2015,41(7):8312-8319
In this work, Taguchi L32 experimental design was applied to optimize flexural strength and hardness of ZrB2-based composites which were prepared by SPS. With this aim, batch ZrB2-based composites tests were performed to achieve targeted experimental design with nine factors (SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure) at four different levels. Flexural strength of all composite was measured by three-point bending test. Hardness measurement was done by Vickers indenter. SEM was applied to evaluate microstructure. The results showed that SiC grain size plays important role on flexural strength and correlation between flexural strength and open porosity is low while hardness strongly depends to open porosity. Grain size variation in the range of ~1.5 µm to ~8 µm has little effect on hardness.  相似文献   

19.
SiC nanowires (SiCnws) modified SiCf/HfC-SiC composites were prepared by precursor infiltration and pyrolysis (PIP) and chemical vapor infiltration (CVI) methods. The microstructure, flexural strengths, impact and impact-ablation tests of the composites with and without SiCnws were investigated. The results showed that after introducing SiCnws, not only the retention rate of HfC ceramic produced by PIP was increased obviously, but also the fracture displacement of the modified composites was reduced due to the enhancement effect of SiCnws at interface between SiC fiber and matrix. After impact and impact-ablation, the strength retention of SiCnws modified composites was 91.6 % and 69.1 % respectively, higher than that of the composites without SiCnws (85.2 % and 54.8 %). As the impact resistance of the modified composites was improved by the pull-out and bridging of SiCnws, the ablation resistance of the impacted composites was enhanced as well.  相似文献   

20.
In this study, a temperature-dependent fracture strength model for whisker-reinforced ceramic composites was developed. This model considers the strength degradation of both whisker and ceramic matrix at elevated temperatures, as well as the evolution of residual thermal stress with temperature. It was verified by comparison with the available flexural strengths of five types of whisker-reinforced ceramic composites at different temperatures, and good agreement between the model predictions and the experimental data is obtained. Moreover, based on the established model, we systematically analyzed the effects of six influencing factors, including the volume fraction and the aspect ratio of whisker, the Young's modulus of matrix and whisker, the thermal expansion coefficient difference and the stress-free temperature, on the temperature-dependent flexural strengths of whisker-reinforced ceramic composites. Some new insights which could help optimize and improve the temperature-dependent fracture strength of whisker-reinforced ceramic composites are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号