首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical, thermal, and mechanical properties of porous SiC ceramics with B4C-C additives were investigated as functions of C content and sintering temperature. The electrical resistivity of porous SiC ceramics decreased with increases in C content and sintering temperature. A minimal electrical resistivity of 4.6 × 10?2 Ω·cm was obtained in porous SiC ceramics with 1 wt% B4C and 10 wt% C. The thermal conductivity and flexural strength increased with increasing sintering temperature and showed maxima at 4 wt% C addition when sintered at 2000 °C and 2100 °C. The thermal conductivity and flexural strength of porous SiC ceramics can be tuned independently from the porosity by controlling C content and sintering temperature. Typical electrical resistivity, thermal conductivity, and flexural strength of porous SiC ceramics with 1 wt% B4C-4 wt% C sintered at 2100 °C were 1.3 × 10?1 Ω·cm, 76.0 W/(m·K), and 110.3 MPa, respectively.  相似文献   

2.
In this work, porous ZrC-SiC ceramics with high porosity and low thermal conductivity were successfully prepared using zircon (ZrSiO4) and carbon black as material precursors via a facile one-step sintering approach combining in-situ carbothermal reduction reaction (at 1600 °C for 2 h) and partial hot-pressing sintering technique (at 1900 °C for 1 h). Carbon black not only served as a reducing agent, but also performed as a pore-foaming agent for synthesizing porous ZrC-SiC ceramics. The prepared porous ZrC-SiC ceramics with homogeneous microstructure (with grain size in the 50–1000 nm range and pore size in the 0.2–4 µm range) possessed high porosity of 61.37–70.78%, relatively high compressive strength of 1.31–7.48 MPa, and low room temperature thermal conductivity of 1.48–4.90 W·m?1K?1. The fabricated porous ZrC-SiC ceramics with higher strength and lower thermal conductivity can be used as a promising light-weight thermal insulation material.  相似文献   

3.
《Ceramics International》2023,49(19):31846-31854
In this study, the effect of the alumina particle size on the formation of mullite using a silica gel powder and micro- and nano-scale Al2O3 powders as raw materials was investigated. The optimized Al2O3 source was then reacted with the silica gel to prepare porous mullite-based ceramics. The results revealed that the highly reactive nano-Al2O3 powder could form mullite at a relatively low firing temperature. Therefore, the nano-Al2O3 powder was used to prepare porous mullite-based ceramics by firing at 1600 °C, 1650 °C and 1700 °C. The pore size of the prepared porous mullite-based ceramics ranges from tens to hundreds of micrometres, with the apparent porosity being 42.8–58.0%. Further, the mullite content in the samples increased with increasing firing temperature, and a higher firing temperature promoted sintering, resulting in improved strength of the sample. After calcination at 1700 °C, the mullite content in the sample reached 81.8%, and the sample showed excellent thermal shock resistance. The strengths of the samples before and after thermal shock were found to be 23.6 and 15.58 MPa, with the residual strength ratio being 66%.  相似文献   

4.
《Ceramics International》2021,47(22):31187-31193
In this study, porous calcium silicate (CS) ceramics with oriented arrangement of lamellar macropore structure were prepared by directional freeze casting method. The lamellar macropores were connected by the micropores on the pore wall, which had good pore interconnectivity. The effects of solid loading of the slurry, freezing temperature, sintering additive content, and sintering temperature on the microstructures and compressive strength of the synthesized porous materials were investigated systematically. The results showed that with the increase of solid loading (≤20 vol%) and sintering additive content, the sizes of lamellar pores and pore walls increased gradually, the open porosity decreased and the compressive strength increased. The sintering temperature had little effect on the pore size of the ceramics, but increasing the sintering temperature (≤1050 °C) promoted the densification of the pore wall, reduced the porosity, and improved the strength. The decrease of freezing temperature had little effect on porosity, but it reduced the size of lamellar pore and pore wall, so as to improve the strength. Finally, porous CS ceramics with lamellar macropores of about 300–600 μm and 2–10 μm micropores on the pore wall were obtained. The porous CS ceramics had high pore interconnectivity, an open porosity of 66.25% and a compressive strength of 5.47 MPa, which was expected to be used in bone tissue engineering.  相似文献   

5.
Micro‐/mesoporous SiOC bulk ceramics with high surface area and bimodal pore size distribution were prepared by pyrolysis of polysiloxane in argon atmosphere at 1100°C–1400°C followed by etching in hydrofluoric acid solution. Their thermal behaviors, phase compositions, and microstructures at different nano‐SiO2 filler contents and pyrolysis temperatures were investigated by XRD, SEM, DSC, and BET. The SiO2 fillers and SiO2‐rich clusters in the SiOC matrix act as pore‐forming sites and can be etched away by HF. At the same time, the SiO2 filler promotes SiOC phase separation during the pyrolysis. The filler content and pyrolysis temperature have important effects on phase compositions and microstructures of porous SiOC ceramics. The resulting porous SiOC bulk ceramic has a maximum specific surface area of 822.7 m2/g and an average pore size of 2.61 nm, and consists of free carbon, silicon carbide, and silicon oxycarbide phases.  相似文献   

6.
《Ceramics International》2022,48(2):2330-2336
Porous forsterite-spinel-periclase ceramics with low thermal conductivity were synthesized via a transient liquid phase diffusion process by using pre-synthesized pellets and fused magnesia powder. The effects of sintering temperature on the pore formation, phase composition, sintering behavior, and properties of the resulting porous ceramics were investigated. The pre-synthesized pellets had a porous structure and contained a large amount of cordierite and enstatite. During the sintering progress, the pellets were converted into a transient liquid phase, which diffused into the solid MgO matrix. The liquid phase diffusion reaction promoted forsterite and spinel formation, which resulted in the in-situ formation of large pores. At elevated temperatures, the liquid phase disappeared and a large number of well-developed grains were simultaneously precipitated from the liquid phase. Porous ceramics with thermal conductivities of 0.42–0.48 W/(m·K) and refractoriness under load values of 1588 °C and 1624 °C were obtained after sintering at 1600 °C for 3 h.  相似文献   

7.
《Ceramics International》2016,42(5):6046-6053
New porous Yb2SiO5 ceramics were prepared by a water-based freeze casting technique using synthesized Yb2SiO5 powders. The prepared porous Yb2SiO5 ceramics exhibit multiple pore structures, including lamellar channel pores and small pores, in its skeleton. The effects of the solid content and sintering temperature on the pore structure, porosity, dielectric and mechanical properties of the porous Yb2SiO5 ceramics were investigated. The sample with 20 vol% solids content prepared at 1550 °C exhibited an ultra-low linear shrinkage (i.e. 4.5%), a high porosity (i.e. 79.1%), a high compressive strength (i.e. 4.9 MPa), a low dielectric constant (i.e. 2.38) and low thermal conductivity (i.e. 0.168 W/(m K)). These results indicate that porous Yb2SiO5 ceramics are good candidates for ultra-high temperature broadband radome structures and thermal insulator materials.  相似文献   

8.
Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity were prepared by sintering nano-SiC powder-carbon black template compacts at 600–1200 °C for 2 h in air. The microstructure of the silica-bonded porous nano-SiC ceramics consisted of SiC core/silica shell particles, a silica bonding phase, and hierarchical (meso/macro) pores. The porosity and thermal conductivity of the silica-bonded porous nano-SiC ceramics can be controlled in the ranges of 8.5–70.2 % and 0.057–2.575 Wm−1 K−1, respectively, by adjusting both, the sintering temperature and template content. Silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity (0.057 Wm−1 K−1) were developed at a very low processing temperature (600 °C). The typical porosity, average pore size, compressive strength, and specific compressive strength of the porous nano-SiC ceramics were ∼70 %, 50 nm, 2.5 MPa, and 2.7 MPa·cm3/g, respectively. The silica-bonded porous nano-SiC ceramics were thermally stable up to 1000 °C in both air and argon atmospheres.  相似文献   

9.
Porous mullite ceramics were fabricated from an industrial grade mullite powder by gelcasting process using fly ash cenospheres (FAC) as a pore‐forming agent. The influence of content of FAC and sintering temperature on the density and strength was evaluated. The microstructure showed that FAC can act as a sintering aid and a pore‐forming agent. When the sintering temperature at 1200°C, porous mullite ceramics with a relatively high porosity (48.1–72.2%), low density (0.84–1.64 g/cm3), low thermal conductivity (0.16–0.22 W/m · K), and high compressive strength (6.21–14.70 MPa) have been obtained.  相似文献   

10.
Micro/mesoporous SiOC bulk ceramics with the highest surface area and the narrowest pore size distribution were prepared by water‐assisted pyrolysis of polysiloxane in argon atmosphere at controlled temperatures (1100°C–1400°C) followed by etching in hydrofluoric acid (HF) solution. Their pyrolysis behaviors, phase compositions, and microstructures were investigated by DSC, FTIR, XRD, and BET. The Si–O–Si bonds, SiO2‐rich clusters, and SiO2 nanocrystals in the pyrolyzed products act as pore‐forming species and could be etched away by HF. Water injection time and pyrolysis temperature have important effects on phase compositions and microstructures of the porous SiOC bulk ceramics, which have a maximum‐specific surface area of 2391.60 m2/g and an average pore size of 2.87 nm. The porous SiOC ceramics consist of free carbon phase, silicon carbide, and silicon oxycarbide.  相似文献   

11.
《Ceramics International》2021,47(24):33978-33987
In this work, a novel and facile technique based on using KCl as space holders, along with partial sintering (at 1900 °C for 30 min), was explored to prepare porous ZrB2–SiC ceramics with controllable pore structure, tunable compressive strength and thermal conductivity. The as-prepared porous ZrB2–SiC samples possess high porosity of 45–67%, low average pore size of 3–7 μm, high compressive strength of 32–106 MPa, and low room temperature thermal conductivity of 13–34 W m−1 K−1. The porosity, pore structure, compressive strength and thermal conductivity of porous ZrB2–SiC ceramics can be tuned simply by changing KCl content and its particle size. The effect of porosity and pore structure on the thermal conductivity of as-prepared porous ZrB2–SiC ceramics was examined and found to be consistent with the classical model for porous materials. The poring mechanism of porous ZrB2–SiC samples via adding pore-forming agent combined with partial sintering was also preliminary illustrated.  相似文献   

12.
Excessive sintering shrinkage leads to severe deformation and cracking, affecting the microstructure and properties of porous ceramics. Therefore, reducing sintering shrinkage and achieving near-net-size forming is one of the effective ways to prepare high-performance porous ceramics. Herein, low-shrinkage porous mullite ceramics were prepared by foam-gelcasting using kyanite as raw material and aluminum fluoride (AlF3) as additive, through volume expansion from phase transition and gas generated from the reaction. The effects of AlF3 content on the shrinkage, porosity, compressive strength, and thermal conductivity of mullite-based porous ceramics were investigated. The results showed that with the increase of content, the sintering shrinkage decreased, the porosity increased, and mullite whiskers were produced. Porous mullite ceramics with 30 wt% AlF3 content exhibited a whisker structure with the lowest shrinkage of 3.5%, porosity of 85.2%, compressive strength of 3.06 ± 0.51 MPa, and thermal conductivity of 0.23 W/(m·K) at room temperature. The temperature difference between the front and back sides of the sample reached 710°C under high temperature fire resistance test. The low sintering shrinkage preparation process effectively reduces the subsequent processing cost, which is significant for the preparation of high-performance porous ceramics.  相似文献   

13.
《Ceramics International》2017,43(6):4910-4918
The porous ceramics were prepared by directly sintering of lead-zinc mine tailings and fly ash as the raw materials without any additional sintering and foaming agent. The effects of fly ash addition on the crystalline phases, pore structure, physical–chemical porosities and mechanical strength were investigated. The results showed that the bulk density decreased firstly and then increased while the porosity and water absorption presented the opposite tendency with the increase of fly ash content. Meanwhile, the chemical stability improved and the flexural strength had the same variation tendency of the bulk density. The phase evolution of sample with 60 wt% fly ash addition indicated that anorthite phase was formed at low temperature (1000 °C). The thermal behavior illustrated that the foaming process was initiated by the reaction of internal constituents in the lead-zinc mine tailings. Different pore structures indicated different foaming mechanisms that probably occurred at different temperatures. The porous ceramics with 60 wt% fly ash addition exhibited excellent properties, including bulk density of 0.93 g/cm3, porosity of 65.6%, and flexural strength of 11.9 MPa.  相似文献   

14.
The effects of SiC whisker addition into nano-SiC powder-carbon black template mixture on flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics were investigated. The flexural strength of 1200°C-sintered porous silica-bonded SiC ceramics increased from 9.5 MPa to 12.8 MPa with the addition of 33 wt% SiC whisker because the SiC whiskers acted as a reinforcement in porous silica-bonded SiC ceramics. The thermal conductivity of 1200°C-sintered porous silica-bonded SiC ceramics monotonically increased from 0.360 Wm–1K–1 to 1.415 Wm–1K–1 as the SiC whisker content increased from 0 to 100 wt% because of the easy heat conduction path provided by SiC whiskers with a high aspect ratio. The specific flow rate of 1200°C-sintered porous SiC ceramics increased by two orders of magnitude as the SiC whisker content increased from 0 to 100 wt%. These results were primarily attributed to an increase in pore size from 125 nm to 565 nm and secondarily an increase in porosity from 49.9% to 63.6%. In summary, the addition of 33 wt% SiC whisker increased the flexural strength, thermal conductivity, and specific flow rate of porous silica-bonded SiC ceramics by 35%, 133%, and 266%, respectively.  相似文献   

15.
Porous yttria-stabilized zirconia (YSZ) ceramics with unidirectionally aligned pore channels were prepared by freezing YSZ/tert-butyl alcohol (TBA) slurry under different freezing temperatures of ?30, ?78 and ?196 °C, respectively. After removing the frozen TBA via freeze-drying in vacuum at ?50 °C, the green samples were sintered at 1450 °C for 2 h in air. The results showed that the freezing temperature significantly influenced microstructure and properties of the porous YSZ ceramics. Both microstructure observation and pore size distribution indicated that the pore channel size decreased significantly with decreasing freezing temperature, regardless of microstructure variations in the individual sample. Both porosity and room-temperature thermal conductivity of the porous YSZ ceramics varied under different freezing temperatures. Regardless of microstructure variations in the samples under different freezing temperatures, all samples had unidirectional pore channels with increasing pore channel size along the freezing direction. The fabricated samples had remarkably low thermal conductivities both in directions perpendicular and parallel to the channel direction, thus rendering them suitable for applications in thermal insulations.  相似文献   

16.
High-temperature properties including compressive strength, thermal shock behavior, and thermal conductivity of porous anorthite ceramics with high specific strength were tested and analyzed. The results showed that the prepared materials merit high-temperature compressive strength, thermal stability, and conductivity. With the appropriate fabrication parameters, even though containing 0.33 g/cm3 bulk density and 88.2% porosity, its compressive strength could reach 2.03 MPa at 1000°C, 147% of that at room temperature; the residual strength ratio kept as 114.7% after a thermal shock at 1200°C. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that anorthite grains refinement and intergranular voids filling by liquid phase were main factors for the high strength. From room temperature to 1200°C, its thermal conductivity only varied from 0.085 to 0.258 W·(m·K)−1. High porosity, a large number of nanoregions in anorthite grains and amorphous phase in grain boundary were main reasons for low thermal conductivity.  相似文献   

17.
Porous SiOC ceramics were obtained from a new self-blowing precursor silicone resin DC217, by pyrolysis at 1200 °C in argon. Silicon carbide powders were incorporated into the silicone resin as inert fillers. The effects of the mean particle size of SiC fillers on the porosity, compressive strength and microstructure of the porous ceramics were investigated. With the mean particle size of SiC powders increasing from 5 μm to 10 μm, the porosity (total and open) of the porous ceramic increased and the compressive strength decreased. However, the porosity, compressive strength and cell morphology of the porous ceramics showed no evident changes when the mean particle size of fillers increased from 10 μm to 15 μm. Micrographs indicated that, when the mean particle size of fillers exceeded 5 μm, the porous ceramics could have a well-defined and regular pore structure. Furthermore, comparing with the porous ceramics which fabricated under the same condition with the SiOC powders as fillers, the cell morphology was similar. But the compressive strength and the oxidation resistance of the porous ceramics with SiC powders as fillers were much better.  相似文献   

18.
《Ceramics International》2022,48(8):10472-10479
Porous mullite ceramics are widely used in heat insulation owing to their high temperature and corrosion resistant properties. Reducing the thermal conductivity by increasing porosity, while ensuring a high compressive strength, is vital for the synthesis of high-strength and lightweight porous mullite ceramics. In this study, ceramic microspheres are initially prepared from pre-treated high-alumina fly ash by spray drying, and then used to successfully prepare porous mullite ceramics with enhanced compressive strength via a simple direct stacking and sintering approach. The influence of sintering temperature and time on the microstructure and properties of porous mullite ceramics was evaluated, and the corresponding formation mechanism was elucidated. Results show that the porous mullite ceramics, calcined at 1550 °C for 3 h, possess a porosity of 47%, compressive strength of 31.4 MPa, and thermal conductivity of 0.775 W/(m?K) (at 25 °C), similar to mullite ceramics prepared from pure raw materials. The uniform pore size distribution and sintered neck between the microspheres contribute to the high compressive strength of mullite ceramics, while maintaining high porosity.  相似文献   

19.
《Ceramics International》2017,43(18):16430-16435
For recycling waste refractory materials in metallurgical industry, porous alumina ceramics were prepared via pore forming agent method from α-Al2O3 powder and slide plate renewable material. Effects of slide plate renewable material (SPRM) on densification, mechanical strength, thermal conductivity, phase composition and microstructure of the porous alumina ceramics were investigated. The results showed that SPRM effectively affected physical and thermal properties of the porous ceramics. With the increase of SPRM, apparent porosity of the ceramic materials firstly increased and then decreased, which brought an opposite change for the bulk density and thermal conductivity values, whereas the bending strength didn’t decrease obviously. The optimum sample A2 with 50 wt% SPRM introducing sintered at 1500 °C obtained the best properties. The water absorption, apparent porosity, bulk density, bending strength and thermal conductivity of the sample were 31.7%, 62.8%, 1.71 g/cm3, 47.1 ± 3.7 MPa and 1.73 W/m K, respectively. XRD analysis indicated that a small quantity of silicon carbide and graphite in SPRM have been oxidized to SiO2 during the firing process, resulting in rising the porous microstructures. SEM micrographs illustrated that rod-like mullite grains combined with plate-like corundum grains to endow the samples with high bending strength. This study was intended to confirm the preparation of porous alumina ceramics with high porosity, good mechanical properties and low thermal conductivity by using SPRM as pore forming additive.  相似文献   

20.
《Ceramics International》2019,45(13):16470-16475
Porous SiC ceramics combine the properties of both SiC ceramics and porous materials. Herein, we design a facile method via pressureless sintering at relatively low temperatures for the synthesis of porous SiC ceramics. In the synthesis process, phosphoric acid was used as the sintering additive that reacted with SiO2 on the surface of SiC to form phosphates. The formed phosphates acted as a binder to connect the SiC particles. At a fixed temperature, the phosphates were partially decomposed and released a large amount of gas. This changed the pore structure of the ceramics and greatly improved their porosity. Finally, we obtained the porous SiC ceramics with high porosity and high strength. We investigate the effects of H3PO4 content on the phase composition, microstructure, porosity, mechanical properties and thermal expansion coefficient of the prepared porous SiC ceramics. It was shown that at the sintering temperature of 1200 °C, the highest porosity of the samples can reach 70.42% when the H3PO4 content is 25 wt%, and their bending strength reaches 36.11 MPa at room temperature when the H3PO4 content is 15 wt%. In addition, the porous SiC ceramics show good high-temperature stability with a bending strength of 42.05 MPa at 1000 °C and the thermal expansion coefficient of 3.966 × 10−6/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号