首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-entropy fluorite oxides   总被引:1,自引:0,他引:1  
Eleven fluorite oxides with five principal cations (in addition to a four-principal-cation (Hf0.25Zr0.25Ce0.25Y0.25)O2-δ as a start point and baseline) were fabricated via high-energy ball milling, spark plasma sintering, and annealing in air. Eight of the compositions, namely (Hf0.25Zr0.25Ce0.25Y0.25)O2-δ, (Hf0.25Zr0.25Ce0.25)(Y0.125Yb0.125)O2-δ, (Hf0.2Zr0.2Ce0.2)(Y0.2Yb0.2)O2-δ, (Hf0.25Zr0.25Ce0.25)(Y0.125Ca0.125)O2-δ, (Hf0.25Zr0.25Ce0.25)(Y0.125Gd0.125)O2-δ, (Hf0.2Zr0.2Ce0.2)(Y0.2Gd0.2)O2-δ, (Hf0.25Zr0.25Ce0.25)(Yb0.125Gd0.125)O2-δ, and (Hf0.2Zr0.2Ce0.2)(Yb0.2Gd0.2)O2-δ, possess single-phase solid solutions of the fluorite crystal structure with high configurational entropies (on the cation sublattices), akin to those high-entropy alloys and ceramics reported in prior studies. Most high-entropy fluorite oxides (HEFOs), except for the two containing both Yb and Gd, can be sintered to high relative densities. These single-phase HEFOs exhibit lower electrical conductivities and comparable hardness (even with higher contents of softer components such as Y2O3 and Yb2O3), in comparison with 8?mol. % Y2O3-stabilized ZrO2 (8YSZ). Notably, these single-phase HEFOs possess lower thermal conductivities than that of 8YSZ, presumably due to high phonon scattering by multiple cations and strained lattices.  相似文献   

2.
Using fluorite oxides as an example, this study broadens high-entropy ceramics (HECs) to compositionally-complex ceramics (CCCs) or multi-principal cation ceramics (MPCCs) to include medium-entropy and/or non-equimolar compositions. Nine compositions of compositionally-complex fluorite oxides (CCFOs) with the general formula of (Hf1/3Zr1/3Ce1/3)1-x(Y1/2X1/2)xO2-δ (X = Yb, Ca, and Gd; x = 0.4, 0.148, and 0.058) are fabricated. The phase stability, mechanical properties, and thermal conductivities are measured. Compared with yttria-stabilized zirconia, these CCFOs exhibit increased cubic phase stability and reduced thermal conductivity, while retaining high Young’s modulus (∼210 GPa) and nanohardness (∼18 GPa). Moreover, the temperature-dependent thermal conductivity in the non-equimolar CCFOs shows an amorphous-like behavior. In comparison with their equimolar high-entropy counterparts, the medium-entropy non-equimolar CCFOs exhibit even lower thermal conductivity (k) while maintaining high modulus (E), thereby achieving higher E/k ratios. These results suggest a new direction to achieve thermally-insulative yet stiff CCCs (MPCCs) via exploring non-equimolar and/or medium-entropy compositions.  相似文献   

3.
《Ceramics International》2023,49(7):10525-10534
Thermal barrier coatings are an effective technology for improving the high-temperature performance of hot section components in gas turbine engine. Due to their excellent properties, high-entropy oxides are considered to be promising materials for thermal barrier coatings. Laser cladding is a coating preparation technology and the top coat prepared by laser cladding technology has an important application value for thermal barrier coatings. In this work, to improve the thermal cycling behavior of the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide coating, a bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide layer and the YSZ layer was designed and fabricated by laser cladding on the NiCoCrAlY alloy surface. The microstructure, phase and mechanical properties of the coating were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and micro-hardness and nanoindentation tests, respectively. The results show that a bi-layer La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7/YSZ coating was successfully prepared by the laser cladding method, and shows good bonding at the interface between the layers. The high-entropy oxide layer maintains a relatively stable defective fluorite structure and its microstructure exists in the stable cellular and dendrite crystalline state after laser cladding. The high-entropy oxide layer prepared by laser cladding showed an average elastic modulus of 167 GPa and an average hardness of 1022.8HV in nanoindentation tests. Thermal cycling of the coating was carried out at 1050 °C. Failure of the bi-layer coating occurred after 60 thermal cycles at 1050 °C. Thermal stresses between different layers are calculated during thermal cycling. Due to its excellent mechanical properties, the bi-layer coating with the La2(Ti0.2Zr0.2Sn0.2Ce0.2Hf0.2)2O7 high-entropy oxide and YSZ layers is expected to become an effective high-entropy oxide thermal barrier coating.  相似文献   

4.
《Ceramics International》2022,48(24):36084-36090
The high-entropy ceramic materials (Zr0.25Ce0.25Hf0.25Y0.25)O1.875 (H-0) and (Zr0.2Ce0.2Hf0.2Y0.2RE0.2)O1.8 (H-RE) (RE = La, Nd and Sm) with fluorite structure and homogeneous element distribution were prepared. With fluorite structure, fine grain size and high density, the H-0 and H-RE ceramics displayed low thermal conductivity, suitable thermal expansion coefficient, high hardness and fracture toughness. The effect of La, Nd and Sm on the mechanical, heat conductivity and heat expansion properties of high entropy ceramics were discussed. The single-phase high-entropy ceramic materials in this work are very suitable for application as thermal barrier materials.  相似文献   

5.
Thermal barrier coating materials with proper thermal expansion coefficient (TEC), low thermal conductivity, and good high-temperature stability are of great significance for their applications in next-generation turbine engines. Herein, we report a new class of high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x with different Ce4+ contents synthesized by a solid-state reaction method. They exhibit different crystal structures at different Ce4+ content, including a bixbyite single phase without Ce4+ doping (x = 0), bixbyite-fluorite dual-phase in the RE2O3-rich region (0 < x < 2), and fluorite single phase in the stoichiometric (x = 2) and CeO2-rich region (x > 2). The high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x exhibit tailorable TECs at a large range of 9.04 × 10–6–13.12 × 10–6 °C–1 and engineered low thermal conductivity of 1.79–2.63 W·m–1·K–1. They also possess good sintering resistance and high-temperature phase stability. These results reveal that the high-entropy (La0.2Sm0.2Er0.2Yb0.2Y0.2)2CexO3+2x are promising candidates for thermal barrier coating materials as well as thermally insulating materials and refractories.  相似文献   

6.
Seeking for new ceramics with excellent thermophysical properties as thermal barrier coatings candidate materials has become a hot research field. In this study, Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x high-entropy ceramic powders were successfully synthesized by the method of solid-state reaction, and the ceramics with single phase were prepared by pressureless sintering at 1600°C. The phase composition, microstructure, element distribution, high-temperature thermal stability, and thermophysical properties of the ceramics were studied. The results showed that Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x ceramics were composed of SrZrO3 phase and the second phase of AB2O4 spinel (i.e., SrY2O4 and SrGd2O4). The content of the second phase was gradually increased after heat treatment at 1400°C, which significantly improved the thermophysical and mechanical properties of the ceramics. The microhardness and fracture toughness of the ceramics were improved compared with that of SrZrO3. The thermal conductivities of Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x (Me = Y, Gd) ceramics were 1.30 and 1.28 W m−1 K−1 at 1000°C, which were about 35% and 40% lower than that of SrZrO3 (1.96 W m−1 K−1) and yttria-stabilized zirconia (2.12 W m−1 K−1), respectively. The thermal expansion coefficients of Sr(Zr0.2Hf0.2Ce0.2Yb0.2Me0.2)O3−x (Me = Y, Gd) ceramics were 12.8 × 10−6 and 14.1 × 10−6 K−1 at 1300°C, respectively, which was more closer to the superalloys compared with SrZrO3 ceramic (11.0 × 10−6 K−1).  相似文献   

7.
《Ceramics International》2022,48(7):9602-9609
The (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 (x = 0–0.5) high-entropy ceramics were successfully prepared by a solid state reaction method and their structures and thermo-physical properties were investigated. It was found that the high-entropy ceramics demonstrate pure pyrochlore phase with the composition of x = 0.1–0.5, while (La0.2Gd0.2Y0.2Yb0.2Er0.2)2Zr2O7 shows the defective fluorite structure. The sintered high-entropy ceramics are dense and the grain boundaries are clean. The grain size of high-entropy ceramics increases with the Ti4+ content. The average thermal expansion coefficients of the (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics range from 10.65 × 10?6 K?1 to 10.84 × 10?6 K?1. Importantly, the substitution of Zr4+ with Ti4+ resulted in a remarkable decrease in thermal conductivity of (La0.2Gd0.2Y0.2Yb0.2Er0.2)2(Zr1-xTix)2O7 high-entropy ceramics. It reduced from 1.66 W m?1 K?1 to 1.20 W m?1 K?1, which should be ascribed to the synergistic effects of mass disorder, size disorder, mixed configuration entropy value and rattlers.  相似文献   

8.
《Ceramics International》2015,41(6):7796-7802
The perovskite proton conductors BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x=0.9, 0.94, 0.98, 1.0, 1.03, 1.06, and 1.1) have been successfully prepared by the conventional solid state reaction route. X-ray diffraction (XRD) patterns of the samples indicate that BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x≥1.0) samples possess a single phase orthorhombic structure, but a secondary phase (Y,Ce)O2−δ exists in BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x<1.0) samples. SEM photographs show that the grain size of BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ increases and the porosity decreases with Ba2+ content varying from x=0.9 to 1.1. Because of ZnO addition as sintering aid, the sintering temperature of the samples reduces from 1550 °C to 1250 °C. The chemical stability of the samples against CO2 decreases with the increase in Ba content from x=0.9 to 1.1. All the samples show a excellent stability against water vapor at 850 °C. The conductivities of the samples increase and the activation energies reduce with the increase in Ba content. The present results suggest that it is very important to control the stoichiometry of cations to obtain desired perovskite type high temperature proton conductors.  相似文献   

9.
《Ceramics International》2023,49(20):33011-33019
A series of high-entropy ceramics (HECs) with compositions of La0·2Ce0.2Nd0.2(ZrxY1−x)0.4O2−δ (x = 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0, the corresponding names being HEC(Zr0·5/Y0.5, Zr0·6/Y0.4, Zr0·7/Y0.3, Zr0·8/Y0.2, Zr0·9/Y0.1, Zr1·0/Y0)) were sintered in air at 1600 °C for 10 h. When x is in the range of 0.5–0.7, a fluorite phase is formed. Then, as x exceeds 0.7, a second pyrochlore-structured phase appears, and its content gradually increases with the increasing x. The grain growth of the samples is inhibited by increasing in the relative Zr content. The grain refinement and the formation of second phase reduce the thermal conductivity and reinforce the mechanical properties of the samples. HEC(Zr0.9/Y0.1) has the lowest thermal conductivity (50–500 °C) and brittleness index, as well as the highest fracture toughness among all samples. In addition, La0·2Ce0.2Nd0.2(ZrxY1−x)0.4O2−δ ceramics have excellent thermal stability under Ar atmosphere in 50–1400 °C. The thermal expansion coefficients of the samples marginally change regardless of the variation in x. All samples show higher oxygen barrier property than Y2O3-stabilized ZrO2.  相似文献   

10.
In this work, BaCe0.6Zr0.2Y0.2-xYbxO3-δ and BaCe0.6Zr0.2Gd0.2-xYbxO3-δ (x?=?0–0.20), proton conducting materials are prepared by the freeze-drying precursor method. The sintering conditions were optimized by adding Zn(NO3)2·6H2O as sintering additive. The materials are thoroughly characterized by different structural and microstructural techniques, including X-ray diffraction, scanning and transmission electron microscopy, and thermogravimetric-differential thermal analysis. The addition of Zn favours the phase formation and densification at lower sintering temperatures; however, it leads to the segregation of a Zn-rich secondary phase, with general formula BaLn2ZnO5 (Ln?Y, Gd and Yb), which is identified and quantified for the first time. All samples with Zn as sintering aid exhibit cubic structure; however, the samples without Zn crystallize with orthorhombic or cubic structure, depending on the composition and thermal treatment. The electrical properties are studied by impedance spectroscopy. A deep analysis of the bulk and grain boundary contributions to the conductivity has revealed that the bulk conductivity remains almost unchanged along both series over Yb-doping; however, the grain boundary resistance decreases. The highest conductivity values are found for the intermediate members of both series, BaCe0.6Zr0.2Y0.1Yb0.1O3-δ and BaCe0.6Zr0.2Gd0.1Yb1O3-δ, with 33 and 28?mS?cm?1 at 750?°C, respectively.  相似文献   

11.
Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8, 0.7) ceramics were prepared by solid state reaction sintering. The sintered Sr1.0(Zr0.9Y0.05Yb0.05)O2.95 is a single-phase solid solution while the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9?0.7) are composites, and a significant grain growth inhibition is observed in the sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9). Rare-earth elements distribution in the bulk materials indicates that Yb and Y preferentially substitute Zr-sites in SrZrO3, and the highest solubility of RE2O3 in pure SrZrO3 is ~0.8 mol%. The sintered Srx(Zr0.9Y0.05Yb0.05)O1.95+x have high thermal expansion coefficients up to ~11.0×10?6 K-1 (1200°C). Sr0.8(Zr0.9Y0.05Yb0.05)O2.75 has the lowest thermal conductivity of 1.38 W·m-1·K-1 at 800°C. Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) show no phase transition from 600 to 1400°C, whereas Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=0.9, 0.8) have excellent high-temperature phase stability over the whole investigated temperature range. Therefore, Srx(Zr0.9Y0.05Yb0.05)O1.95+x (x=1.0, 0.9, 0.8) are considered as promising TBCs materials that might be operated at higher temperatures compared to YSZ.  相似文献   

12.
In this paper, we explored the possibility of forming single-phase high-entropy fluorite oxides (HEFOs) in the (Ce0.2Zr0.2Ti0.2Sn0.2M0.2)O2-δ (M = Mg, Y, Yb, and Ca) system. The result showed that single-phase high-entropy fluorite can only be obtained from (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ. Compared with other reported anion-deficient HEFOs, this material has the lowest rare earth element content, the smallest average cationic radius and the lowest theoretical density. The effects of cation radius and starting materials on the formation of single-phase HEFOs are discussed.  相似文献   

13.
《Ceramics International》2022,48(11):14980-14986
A series of high-entropy oxides (La0.25Sm0.25Gd0.25Yb0.25)2Ce2+xO7+2x were synthesised adopting a improved sol-gel technique and fritting method. The crystal-lattice, microstructure, elemental constitution, and thermal-physical performances were studied. The results showed that the synthesised high-entropy oxides have a single-fluorite lattice structure. The bulk specimen exhibits a compact microstructure, and clear grain boundaries. The thermal conductivities of the obtained high-entropy oxides are lower than those of CeO2 and 7YSZ due to lattice strains and numerous oxygen vacancies. The obtained high-entropy oxides have greater thermal expansion coefficients than 7YSZ. The thermal conductivity and expansion coefficient are elevated because of the addition of excess CeO2. The synthesised high-entropy oxides also exhibit outstanding lattice steadiness up to 1200 °C.  相似文献   

14.
A series of rare earth zirconates (RE2Zr2O7) high-entropy ceramics with single- and dual-phase structure were prepared. Compared with La2Zr2O7 and Yb2Zr2O7, the smaller “rattling” ions (Yb3+, Er3+, Y3+) have been incorporated into pyrochlore lattice in (La0.2Nd0.2Y0.2Er0.2Yb0.2)2Zr2O7 (LNYEY) while larger ions (La3+, Nd3+, Sm3+, Eu3+) incorporated into fluorite lattice in (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 (LNSGY). Due to high-entropy lattice distortion and resonant scattering derived from smaller ions Yb3+, Er3+, and Y3+, LNYEY shows a lower glass-like thermal conductivity (1.62-1.59 W m-1 K-1, 100-600℃) than LNSGY (1.74-1.75 W m-1 K-1, 100-600℃). Moreover, LNYEY and LNSGY exhibit enhanced Vickers’ hardness (LNYEY, Hv = 11.47 ± 0.41 GPa; LNSGY, Hv = 10.96 ± 0.26 GPa) and thermal expansion coefficients (LNYEY, 10.45 × 10-6 K-1, 1000℃; LNSGY, 11.02 × 10-6 K-1, 1000℃). These results indicate that dual-phase rare-earth-zirconate high-entropy ceramics could be desirable for thermal barrier coatings.  相似文献   

15.
《Ceramics International》2023,49(18):29729-29735
Herein, five new La2Zr2O7 based high-entropy ceramic materials, such as (La0.2Ce0.2Gd0.2Y0.2Er0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7, (La0.2Gd0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Y0.2Sm0.2)2Zr2O7), were synthesized using a sol-gel and high-temperature sintering (1000 °C) method. The spark plasma sintered (SPS) (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 pellet shows a low thermal conductivity of 1.33 W m-1 K-1 at 773 K, and it also exhibits better CaO–MgO–Al2O3–SiO2 corrosion resistance than that of Y2O3 stabilized ZrO2. It shows that (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 has a promising application potential as a thermal barrier coating.  相似文献   

16.
An entropy-stabilized rare earth hafnate (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 (5RH) with defective fluorite structure was successfully prepared by the emerging ultrafast high-temperature sintering (UHS) in less than six minutes. The 5RH ceramic possessed a higher thermal expansion coefficient (11.23 ×10?6/K, 1500 °C) and extremely low thermal conductivity (0.94 W/(m·k), 1300 ℃) owing to the larger lattice distortion of high-entropy materials. After high-temperature annealing at 1500 ℃, the 5RH showed extremely sluggish grain growth characteristics and excellent high-temperature phase stability, mainly attributed to the non-equilibrium sintering characteristic of the UHS and the sluggish diffusion effect of high-entropy materials. Therefore, (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 has excellent potential as a next-generation thermal barrier coating material to replace traditional Y2O3 stabilized ZrO2. Finally, using the UHS to prepare high-entropy ceramics provides a new technique for fast-sintering and developing next-generation thermal barrier coating materials.  相似文献   

17.
A high entropy fluorite oxide (Hf0.2Zr0.2Ce0.2Y0.2Yb0.2)O2-δ (HEFO) was investigated to reveal its ultra-wide-temperature phase stability in air. The HEFO exhibited a single-phase fluorite structure, and its lattice constant, a, was evaluated to be 0.527 ± 0.02 nm from room temperature (RT) to > 2573 K. No precipitation of single-component oxides, such as HfO2, ZrO2, Y2O3 and CeO2, was experimentally observed. Since both Gibbs free energy (G) change of possible precipitation reactions and the second derivative of GHEFO with respect to all single-component oxides were positive, the HEFO exhibits no precipitation and decomposition at temperatures above 1700 K. The sluggish dynamics, which was verified by a long-term annealing experiment at 1473 K for 175 h showing a few Yb2O3 precipitation, contributed to the single-phase solution nature of HEFO below 1700 K. Such a superior phase stability in ultrawide temperature range help accelerate the engineering application of HEFO to be thermal structural components.  相似文献   

18.
High-entropy oxides Hf0.25Zr0.25Ce0.25Gd0.125X0.125O2-δ (X = Ca, Ti or Si) have been fabricated via solid-state reactions, in which the co-stabiliser X was intentionally chosen for its significant atomic mass and size difference from Gd. The single phase of these cubic fluorite oxides with dense microstructures has been confirmed by XRD, EDS and TEM characterizations. These phases are thermally stable without the appearance of secondary phase and phase separation within the temperature range studied (up to 1200 °C). Compared to yttria-stabilised zirconia (YSZ), which is used in the current commercial thermal barrier coatings, these fluorite oxides have higher coefficients of thermal expansion and lower thermal conductivities. They also exhibit comparable Young’s modulus and hardness with other reported high-entropy fluorite oxides. The fluorite oxides reported in this study are promising to improve the thermal expansion matching between ceramic topcoat and metal substrates for thermal barrier coating applications.  相似文献   

19.
Single-phase (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ porous high-entropy ceramics have been in-situ fabricated by foam-gelcasting-freeze drying method at different temperatures. The microstructure, phase composition, and properties of the obtained ceramics were investigated. The results indicate that compared with other porous ceramics reported in the literatures, this type of ceramics exhibits excellent performance. The sample prepared at 1350 °C shows high porosity (88.6 %), low thermal conductivity (0.023 W m-1 K-1), and high compressive strength (1.48 MPa). The current study suggests that porous (Ce0.2Zr0.2Ti0.2Sn0.2Ca0.2)O2-δ high entropy ceramics are promising candidates for thermal insulation applications.  相似文献   

20.
An electrolyte in fuel cells requires not only high ionic conductivity, but also high transport numbers of ionic conduction. Although Y-doped BaZrO3 is regarded to be the most promising candidate as the electrolyte in protonic ceramic fuel cells (PCFCs), significant hole conduction generates in wet oxygen at high temperatures. With the aim to increase the transport number of ionic conduction, in this work, Sr and Ca were introduced to partially substitute Ba in BaZr0.8Y0.2O3-δ. The results revealed that a single cubic perovskite phase was obtained for Ba0.95Ca0.05Zr0.8Y0.2O3-δ and Ba1-xSrxZr0.8Y0.2O3-δ (x = 0.05, 0.10, 0.15, 0.20 or 0.40). However, replacing Ba with Sr resulted in almost no increase in the transport number of ionic conduction in wet oxygen atmosphere, but drastic decrease in proton conductivity at all replacement levels. In addition, Ba0.95Ca0.05Zr0.8Y0.2O3-δ shows no meaningful change in the transport number of ionic conduction, compared with BaZr0.8Y0.2O3-δ. Incorporating Ca or Sr into the Ba-site of BaZr0.8Y0.2O3-δ appears to impart no positive influence on electrochemical properties. These interesting results also indicate that the hole conductivity decreases with the decrease in proton conductivity, and will aid to consider the hole conduction mechanism. BaHfO3 doped with 10 and 20 mol% Y was also prepared. A bimodal microstructure was observed for BaHf0.9Y0.1O3-δ, whereas BaHf0.8Y0.2O3-δ shows uniform grain size after sintering at 1600°C for 24 hours. The transport numbers of ionic conduction and bulk conductivity in such Y-doped BaHfO3 samples are close to those of BaZrO3 doped with the same amount of Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号