首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(5):7236-7244
A method for preparation of dense Y2O3–MgO composite ceramics by the microwave sintering was developed. The initial powders were obtained by glycine-nitrate self-propagating high-temperature synthesis (SHS) with different oxidant-to-fuel ratio. Density and IR-transmission of microwave sintered Y2O3–MgO ceramics increase with respect to dispersity of the SHS-powders and reach its maximum values for the powder prepared in a 20% fuel excess. The sintering behavior of Y2O3–MgO compacts was investigated by optical dilatometry and measuring an electric conductivity upon heating. Significant microwave radiation power surges at temperatures of 900–1000 °C, caused by the decomposition of magnesium carbonate, have been found. As a result of matching the conditions for the synthesis of powders and sintering modes, a transmission of composite ceramics of 78% at a wavelength of 6 μm was achieved at a maximum processing temperature of 1500 °C.  相似文献   

2.
In the field of hard tissue repair, titanium-based materials have excellent mechanical properties and magnesium-based materials have good bioactivity, but their shortcomings are that titanium-based materials do not have good bioactivity, while magnesium-based materials are limited in application due to their rapid degradation rate. In order to give full play to the advantages of these two materials, the TiO2–MgO composite ceramic materials were prepared by combining the two elements and sintering at high temperature. By changing sintering temperature and MgO content, the structure composition and bioactivity of composite ceramic materials can be controlled. The surface morphology, mineralization ability in vitro, cytotoxicity and bone-promoting properties of composite ceramic materials were studied. The experimental results show that high MgO content composite ceramic materials will bring too strong alkalinity to the environment, which will accelerate the mineralization ability of materials, but is not conducive to the survival of cells. Composite ceramic materials with suitable sintering temperature and MgO content have good bioactivity and bone-promoting performance, while the porous structure produced by MgO degradation is beneficial to cell spreading and can form a good combination between the material and bone tissue at an early stage. Porous structure and Mg2+ can adjust the bone-promoting properties of materials together. Through the above experimental research, it is found that TiO2–MgO composite ceramic material is a new type of material which is used in the field of hard tissue repair due to its good bioactivity.  相似文献   

3.
《Ceramics International》2023,49(18):29512-29519
A citrate-nitrate combustion method was applied to synthesize fine composite Gd2-xYxO3-MgO (x = 0, 0.02, 0.2, 0.3, 0.4, 0.6) nanopowders. Y2O3 substitution inhibited Gd2O3 phase transition from cubic structure to monoclinic structure during sintering, thereby stabilizing its cubic structure to room temperature. This approach led to nanocomposite ceramics with a grain size of about 190 nm and increased the transmittance to 85% over the 3–5 μm wavelength range when x = 0.3. However, the addition of Y2O3 weakened the mechanic properties of the nanocomposite ceramics.  相似文献   

4.
Bulk glasses containing HfO2 nano-crystallites of 20–50 nm were prepared by hot-pressing of HfO2–Al2O3–Y2O3 glass microspheres at 915 °C for 10 min. By annealing at temperatures below 1200 °C, the bulk glasses were converted into transparent glass-ceramics with HfO2 nano-crystallites of 100–200 nm, which showed the maximum transmittance of ~70% in the infrared region. An increase of annealing temperature (>1300 °C) resulted in opaque YAG/HfO2/Al2O3 eutectic ceramics. The eutectic ceramics contained fine Al2O3 crystallites and showed a high hardness of 19.8 GPa. The fracture toughness of the eutectic ceramics increased with increasing annealing temperature, and reached the maximum of 4.0 MPa m1/2.  相似文献   

5.
The effects of adding 1–8 wt% Y2O3 on phase formation and fracture toughness of Al2O3xZrO2–Y2O3(AZY) ceramics were studied. Phase formations of the samples were characterized by the X-ray diffraction (XRD) technique. It was found that the major phase was rhombohedral-Al2O3, while the minor phase consisted of the monoclinic-ZrO2, tetragonal-ZrO2 and monoclinic-Y2O3. It was found that Y2O3 contents did not clearly influence grain shape of AZY ceramics. The results obtained from the microhardness test could be used to evaluate the fracture toughness. It was found that the smaller grains had high fracture toughness. The maximum fracture toughness of 4.827 MPa m1/2 was obtained from 4 wt% Y2O3. Refinement of lattice parameters using Rietveld analysis revealed the quantitative phases of AZY ceramics. This shows that under adding Y2O3 conditions the proportion of tetragonal-ZrO2 phase plays an important role for the mechanical properties of AZY ceramics.  相似文献   

6.
Eu-doped transparent mica glass–ceramics were prepared, the influence of Eu-doping on the crystallization of the parent glasses was investigated and the luminescent properties of the parent glasses and the glass–ceramics were estimated. A small additive amount of Eu element was very effective in preparing transparent mica glass–ceramics. However, the excess addition led to the coarsening of phase separation in the glass phase and the separation of unidentified crystal phases and β-eucryptite during heating of the parent glasses, which caused white opaque at lower heating temperatures. When mica crystals were separated, Eu ions entered the interlayers of mica crystals. The observed emission and excitation spectra showed that parts of Eu3+ ions which were added as Eu2O3 were reduced to Eu2+ ions during melting of the starting materials and heating the parent glasses in air and the energy transfer from Eu2+ to Eu3+ ions occurred.  相似文献   

7.
It is demonstrated that a complete elimination of pores on sintering is governed not only by the size of the ceramic powder particles and by the homogeneity of their mutual coordination but similarly strongly by the state of the crystal lattice: with different cation disorder at fixed stoichiometry (n = 1) the sintering temperatures may differ by as much as 200 °C at constant powder particle size and equal homogeneity of the green bodies. Additionally, the impact of stoichiometry was investigated over the range between n = 1 and n = 3 with retarded reactive sintering at moderately increased Al2O3 concentrations but promoted densification of alumina-rich compositions. Taking advantage of the observed effects, sintered spinel ceramics were derived by reactive sintering of undoped MgO/Al2O3 mixtures resulting in an in-line transmittance which equals spinel single crystals of similar composition from 200 nm wave length up to the IR range.  相似文献   

8.
Dense pressure-sintered reaction-bonded Si3N4 (PSRBSN) ceramics were obtained by a hot-press sintering method. Precursor Si powders were prepared with Eu2O3–MgO–Y2O3 sintering additive. The addition of Eu2O3–MgO–Y2O3 was shown to promote full nitridation of the Si powder. The nitrided Si3N4 particles had an equiaxial morphology, without whisker formation, after the Si powders doped with Eu2O3–MgO–Y2O3 were nitrided at 1400 °C for 2 h. After hot pressing, the relative density, Vickers hardness, flexural strength, and fracture toughness of the PSRBSN ceramics, with 5 wt% Eu2O3 doping, were 98.3 ± 0.2%, 17.8 ± 0.8 GPa, 697.0 ± 67.0 MPa, and 7.3 ± 0.3 MPa m1/2, respectively. The thermal conductivity was 73.6 ± 0.2 W m?1 K?1, significantly higher than the counterpart without Eu2O3 doping, or with ZrO2 doping by conventional methods.  相似文献   

9.
《Ceramics International》2016,42(5):6273-6281
This work deals with some physical investigation on SnO2–ZnSnO3 ceramics grown on glass substrates at different temperatures (450 °C and 500 °C). Structural and optical properties were investigated using X-Ray diffraction (XRD), Raman, infrared (IR) absorption (FTIR), UV–visible spectroscopy and Photoluminescence (PL) techniques. XRD results revealed the existence of a mixture of SnO2/ZnSnO3 phases at different annealing temperatures. Structural analysis showed that both phases are polycrystalline. On the other hand, the optical constants (refractive index, extinction coefficient and the dielectric constants) have been obtained by the transmittance and the reflectance data. The optical band gap energy changed from 3.85 eV to 3.68 eV as substrate temperature increased from 450 °C to 500 °C. Raman, FTIR modes and PL reinforced this finding regarding the existence of biphasic (SnO2 and ZnSnO3) which is detected also by X-Ray diffraction analysis. Finally, the Lattice Compatibility Theory was evoked for explaining the unexpected incorporation of zinc ions in a rhombohedral structure within SnO3 trigonal lattice, rather than the occupation of SnO2 available free loci. All the results have been discussed in terms of annealing temperature.  相似文献   

10.
《Ceramics International》2020,46(9):13669-13676
Infrared (IR) transparent Y2O3–MgO nanocomposites with a volume ratio of 50:50 were synthesized by combining colloidal and spark-plasma-sintering (SPS) techniques. In order to attain well-dispersed and homogeneous starting Y2O3–MgO nanopowder mixture, the effects of the pH value and the amount of polyetherimide (PEI) dispersant on the suspension stability were studied. Rheological measurement reveals that highly-dispersed and stable suspension was obtained at 7 wt% of PEI dispersant under pH = 10.6. The obtained nanopowders with particle size of 20–30 nm were densified using SPS at several sintering temperatures. The sintered composites show fine grains, narrow grain size distribution and uniform microstructure. The nanocomposite sintered at 1250 °C showed the maximum IR transmittance of 84% at a wavelength range of 2.5–6 μm. The Vickers hardness of the nanocomposite was about 11.9 ± 0.3 GPa, which is significantly higher than those of single phase MgO or Y2O3. Successful fabrication of the high-performance Y2O3–MgO nanocomposite indicates that i) the colloidal technique is an effect method to obtain highly dispersed and homogeneous nanopowders and ii) the SPS technique is a powerful tool to fabricate fine-grained dense transparent ceramics, which are suitable for fabricating IR transparent Y2O3–MgO composite ceramics from commercial starting powders.  相似文献   

11.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

12.
《Ceramics International》2022,48(24):36500-36514
The paper presents the results of preparing biphase SrTiO3–TiO2 ceramics as a promising system for n-type thermoelectrics using the features of a two-dimensional electron gas. Ceramics was obtained by reactive spark plasma sintering of SrCO3 and TiO2. The dynamics of phase transformations are shown; it is clarified that phase transformations are not the driving force of sintering. The mutual stabilization of the SrTiO3 and TiO2 phases is shown. Unique data on the assessment of the temperature gradient in the system have been obtained. A comparison of the thermoelectric characteristics of biphasic ceramics and its constituent phases allows concluding that the role of the two-dimensional electron gas is reduced to modulating the properties of bulk phases. Clear signs of size quantization were detected by the X-ray luminescence method, which is expressed in the blueshift of the luminescence spectrum by 22.3 ± 0.8 meV.  相似文献   

13.
Glass samples with composition of (50?X) PbO–X MgO–25 TiO2–25B2O3 (where X=0, 5, 10 and 15 mol%) were prepared using conventional quenching technique. The amorphous nature of glass samples were confirmed by XRD. The glass transition temperature, Tg and crystallization temperature Tc were determined from the DTA. It has been observed that the addition of MgO enhances the Tg. The rise in Tg with MgO content may be attributed to the greater field strength of Mg2+ cation (as compared to Pb2+) which leads to the formation of stronger bonds. These glass samples were converted to glass–ceramics by following a two-stage heat treatment schedule. It was observed that there was good correlation between the density and CTE results of the glass–ceramics. The XRD results revealed the formation of tetragonal lead titanate as a major crystalline phase in the glass–ceramics. The addition of MgO to the glass contributes to the formation of MgB4O7. The dielectric constant for all the glass–ceramic samples was observed to be higher than that of corresponding glass samples. Further, with addition of MgO the room temperature dielectric constant for glass–ceramic samples increases up to 10 mol% of MgO and then decreases for 15 mol%. It has been further observed that the variation of dielectric constant of glass–ceramic samples with MgO content is exactly opposite to the variation of crystallite size of PbTiO3 embedded in the glass ceramic-samples.  相似文献   

14.
In this study, a citrate–nitrate combustion method was applied to synthesize composite Y2O3–MgO nanopowders. In order to optimize the synthesis condition to support sufficient combustion, the molar ratio of citric acid to nitrate (c/n molar ratio) used in the reaction mixtures was varied between 0.17 and 0.34. Nanopowders with an average particle size of 17 nm were achieved. The properties of these nanopowders indicated that the higher molar ratios decreased the unreacted organic components and increased the amount of carbide on the surface of the oxides, which helped to inhibit the formation of carbonate groups. The amount of carbonate groups was reduced with the increasing c/n molar ratio. Y2O3–MgO nanocomposites fabricated through hot-isostatic-pressing sintering showed a uniform distribution of Y2O3 and MgO grains, which had an average size of ∼180 nm. In addition, the absorption peaks at 1410 and 1511 cm−1 disappeared until the c/n molar ratio reached 0.28. A high average infrared transmittance of 83% in the range of 4000–1667 cm−1 (2.5–6 μm) was obtained in the nanocomposites.  相似文献   

15.
《Ceramics International》2021,47(22):31214-31221
Laminated B4C–TiB2 ceramics with h-BN interface layers were successfully prepared by roll forming and tape casting, and samples with different numbers of stacked layers were obtained. Scanning electron microscopy and X-ray diffraction were used to analyze the microstructure and interlayer crystal phases of the composites, and the bending strength, fracture toughness, and work of fracture were measured. As the number of h-BN layers increased, the fracture toughness increased from 7.38 ± 0.5 MPa m1/2 to 9.01 ± 0.61 MPa m1/2, which is 2–3 times higher than that of monolithic B4C ceramics. As the fracture toughness increased, the hardness remained at a high level (31.67 GPa). Bending tests showed that cracks deflected when they encountered the h-BN interfacial layers. The toughening mechanisms included the deflection and branching of cracks and generation of new microcracks, which increased the length of the propagation path and work of fracture.  相似文献   

16.
《Ceramics International》2022,48(20):29882-29891
A simple strategy for preparing MgO–Al2O3–CaO-based porous ceramics (MACPC) with high strength and ultralow thermal conductivity has been proposed in this work based on the raw material of phosphorus tailings. The effects of phosphorus tailings content, carbon black addition and heat treatment temperature on the properties of MACPC were studied, and their pore-forming mechanism during sintering was revealed. The results showed that the main phase composition of MACPC was magnesia alumina spinel and calcium aluminate after sintering at 1225 °C. Furthermore, the MACPC exhibited excellent comprehensive properties when 60 wt% phosphorus tailings and 40 wt% alumina were added, whose apparent porosity was 62.8%, cold compressive strength was 14.8 MPa, and the thermal conductivity was 0.106 W/(m·K) at 800 °C. The synchronously enhanced strength and thermal insulation properties of MACPC were related to the formation of uniformly distributed micropores (<2 μm) and passages in the matrix, which originated from the decomposition of phosphorus tailings and the burnt out of carbon black during the sintering process. The preparation of MACPC with high temperature resistance and excellent mechanical and thermal insulation properties with the raw material of phosphorus tailings provided an effective method for the high-value utilization of phosphorus tailings.  相似文献   

17.
Transparent MgO·1.5Al2O3 spinel ceramics were successfully prepared via reactive sintering of Al2O3 and MgO raw powders followed by hot isostatic pressing (HIP) using CaO as the sintering additive. The effects of CaO on the densification process, microstructure and optical quality of samples were investigated. It was found that the amount of CaO played an important role in the sintering process. By adding 0.05?wt% CaO, the sample with high transmittance (82.3% at 400?nm), small grain size (<5?μm) and high strength (228?±?15?MPa) was obtained after HIPing at 1550?°C. However, when the amount of CaO increased to 0.1?wt%, non-cubic and columnar-shaped grains generated at low HIP temperatures (1550–1650?°C), which severely reduced the optical quality of resulting samples. The grains were calcium aluminates, whose formation was closely related to the molar ratio of Al2O3/MgO, CaO amount and sintereing temperature.  相似文献   

18.
Zinc oxide optical ceramics containing 0–2 wt% ytterbium are prepared by uniaxial hot pressing of commercial oxides at 1150 and 1180 °C. The ceramics have the main crystalline phase of hexagonal wurtzite-type ZnO. Ytterbium ions do not enter the ZnO crystals but form a cubic sesquioxide phase of Yb2O3 located at the ZnO grain boundaries. Yb acts as an inhibitor for the ZnO grain growth. The ceramics exhibit transmittance up to 60 % in the visible. Their transmission in the infrared is determined by the free charge carrier absorption. The Yb3+ ions are found in C2 and C3i sites in Yb2O3 crystals. Under X-ray excitation, the ceramics exhibit intense luminescence bands in the blue (near-band-edge emission) and green (defect emission) whose positions, intensities and decay times depend on the Yb content. Yb2O3 causes a redistribution of luminescence intensity in favor of the near-band-edge emission and fastens the emission decay.  相似文献   

19.
《Ceramics International》2020,46(15):23427-23432
To investigate the effects of Y2O3 on the physical properties and biocompatibility of β–SiAlON ceramics, β–SiAlON ceramics were prepared with Al, Si, and α–Al2O3 powders using a direct nitriding technique. As a sintering additive, Y2O3 helps lower the sintering temperature and forms β–SiAlON ceramics. In this study, the physical and biological properties of the prepared ceramics were investigated to evaluate their use as bone-repairing material. Experiments revealed that the main crystal composition of the sample was Si4Al2O2N6, containing small amount of additional phases Y3Al5O12 with increasing content of Y2O3. The porosity and compressive strength initially decrease and then increase to their initial values, whereas the bulk density exhibits the opposite trend with an increased proportion of Y2O3. The proliferation of osteoblastic and angiogenic cells demonstrates that β–SiAlON and Y3Al5O12 have good biocompatibility; however, the sample porosity has a slight effect on the cell proliferation rate. This implies that in human tissues, bone-repairing speed can be adjusted by modifying the sample porosity or material surface roughness. Therefore, Y2O3 can be added to β–SiAlON ceramics to regulate their microstructure, physical properties, and biological properties for tissue engineering applications.  相似文献   

20.
Silicon nitride (Si3N4) ceramics doped with two different sintering additive systems (Al2O3–Y2O3 and Al2O3–Yb2O3) were prepared by hot-pressing sintering at 1800℃ for 2 h and 30 MPa. The microstructures, nano-indentation test, and mechanical properties of the as-prepared Si3N4 ceramics were systematically investigated. The X-ray diffraction analyses of the as-prepared Si3N4 ceramics doped with the two sintering additives showed a large number of phase transformations of α-Si3N4 to β-Si3N4. Grain size distributions and aspect ratios as well as their effects on mechanical properties are presented in this study. The specimen doped with the Al2O3–Yb2O3 sintering additive has a larger aspect ratio and higher fracture toughness, while the Vickers hardness is relatively lower. It can be seen from the nano-indentation tests that the stronger the elastic deformation ability of the specimens, the higher the fracture toughness. At the same time, the mechanical properties are greatly enhanced by specific interlocking microstructures formed by the high aspect ratio β-Si3N4 grains. In addition, the density, relative density, and flexural strength of the as-prepared Si3N4 ceramics doped with Al2O3–Y2O3 were 3.25 g/cm3, 99.9%, and 1053 ± 53 MPa, respectively. When Al2O3–Yb2O3 additives were introduced, the above properties reached 3.33 g/cm3, 99.9%, and 1150 ± 106 MPa, respectively. It reveals that microstructure control and mechanical property optimization for Si3N4 ceramics are feasible by tailoring sintering additives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号