首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(13):22015-22021
Multilayer ceramic capacitors (MLCCs) had become an important component of many electronic devices on account of its miniaturization, high capacitance and reliability. To satisfy the requirements of MLCCs, the temperature–insensitivity and dielectric properties of the dielectric ceramics were urgent to be enhanced. In our work, (1–x)K0.5Na0.5NbO3xBi(Li0.5Nb0.5)O3 (abbreviated to KNN–xBLN) were successfully synthesized by traditional solid state reaction method. On the one hand, the doping BLN induced the diffused phase transition and broadened the dielectric anomaly peaks, which improved the temperature insensitivity of KNN-based ceramics. On the other hand, the nanosized grains and dense microscopy boosted the breakdown electric field. Ultimately, the KNN–0.175BLN samples presented the excellent dielectric properties with high dielectric constant (1735) and low dielectric loss (1.9%) at room temperature with a wide temperature stability range (–62 – 300 °C), which exhibited the wider temperature stability range than X9R specification. Meanwhile, the x = 0.175 samples also achieved a high recoverable energy storage density of 3.71 J/cm3 under the breakdown electric field of 360 kV/cm. The designed KNN–based dielectric materials were expected to be applicable to the energy storage capacitor with standed high operating temperature.  相似文献   

2.
The xBi(Zn2/3Nb1/3)O3–(1?x)(K0.5Na0.5)NbO3 (abbreviated as xBZN–(1?x)KNN) ceramics have been synthesized using the conventional solid‐state sintering method. The phase structure, dielectric properties and “relaxorlike” behavior of the ceramics were investigated. The 0.03BZN–0.97KNN ceramics show a broad and stable permittivity maximum near 2000 and lower dielectric loss (≤5%) at a broad temperature usage range (100°C–400°C) and the capacitance variation (ΔC/C150°C) is maintained smaller than ±15%. The 0.03BZN–0.97KNN ceramics only possess the diffuse phase transition and no frequency dispersion of dielectric permittivity, which indicates that 0.03BZN–0.97KNN ceramics is a high temperature “relaxorlike” ferroelectric ceramics. These results indicate that 0.03BZN–0.97KNN ceramics are excellent promising candidates for preparing high‐temperature multilayer ceramics capacitors.  相似文献   

3.
Textured (1?x?y)Bi1/2Na1/2TiO3xBaTiO3yK0.5Na0.5NbO3 (BNT–100xBT–100yKNN) ceramics with a {001} pseudocubic (pc) orientation were fabricated by templated grain growth using Bi1/2Na1/2TiO3 templates. Temperature‐dependent electromechanical results demonstrate that the strain response of templated BNT–xBT–yKNN ceramics is stable from room temperature (RT) to 125°C. The temperature‐dependent strain and polarization response are compared to randomly oriented ceramics, for BNT–100xBT–2KNN (0.05 ≤ x ≤ 0.07). Textured BNT–7BT–2KNN reached a maximum 0.47% strain response at 5 kV/mm, an almost 50% increase compared to randomly oriented BNT–7BT–2KNN. Over the temperature range RT–125°C, the strain response of templated BNT–6BT–2KNN degraded from 0.38% to 0.22% (?42.1%) compared to 0.37% to 0.18% (?51.4%) for randomly oriented ceramics. The temperature‐dependent strain response suggests that templated BNT–100xBT–100yKNN ceramics are well suited for elevated temperature applications.  相似文献   

4.
Systematic investigation on phase transition, dielectric and piezoelectric properties of (1-x)K0.5Na0.5Nb0.997Cu0.0075O3-xSrZrO3 (x = 0, 0.03, 0.06, 0.09, 0.12, 0.15, abbreviated as KNNC-100xSZ) ceramics was carried out. Due to the coexistence of orthorhombic and tetragonal phase in a wide temperature range, a diffused polymorphic phase transition (PPT) region was achieved in KNNC with x  0.06. KNNC-12SZ ceramics exhibited high dielectric permittivity (∼1679), low dielectric loss (∼0.02) and small variation (Δe'/ε'25 °C  15%) in dielectric permittivity from −78 °C to 237.3 °C. KNNC-6SZ ceramic possessed a high level of unipolar strain (∼0.15%) and maintained a smaller variation of ±12% under the corresponding electric field of 60 kV cm−1 at 10 Hz from 25 °C to 175 °C. d33*, which was calculated according to the unipolar strain at 60 kV cm−1, was 230 pm V−1 and remained stable below 100 °C. Therefore, our work provided a new promising candidate for temperature-insensitive capacitors and piezoelectric actuators.  相似文献   

5.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

6.
A novel BaTiO3–Na0.5Bi0.5TiO3–Nb2O5–NiO (BT‐NBT‐Nb‐Ni) system that meets the X8R specification (?55°C–150°C, ΔC/C≤±15%) of multilayer ceramic capacitors (MLCCs) was fabricated, with a maximum dielectric constant of 2350 at room temperature (25°C). Core–shell microstructure was observed by transmission electron microscopy (TEM), accounting for the good dielectric temperature stability. The role of Ni on the formation of core–shell structure and phase structure, and the subsequent relationship between structure and dielectric/ionic conduction properties were investigated. It was observed that the addition of Ni could adjust the ratio of core/shell, and significantly reduces the dielectric loss over the studied temperature range. A new Ba11(Ni, Ti)28O66+x phase with a 10‐layer close‐packed structure was identified by X‐ray diffraction (XRD), serving as a source of oxygen vacancies for ionic conduction in addition to Ba(Ni,Ti)O3. Furthermore, the impedance spectroscopy measurements demonstrated the remarkable impact of these Ni‐induced oxygen vacancies on both the grain and grain‐boundary conductivities.  相似文献   

7.
The microstructure, phase structure, ferroelectric, and dielectric properties of (1?x)Bi0.5Na0.5TiO3xNaNbO3 [(1?x)BNT‐xNN] ceramics conventionally sintered in the temperature range of 1080°C–1120°C were investigated as a candidate for capacitor dielectrics with wide temperature stability. Perovskite phase with no secondary impurity was observed by XRD measurement. With increasing NN content, (1?x)BNT‐xNN was found to gradually transform from ferroelectric (x = 0–0.05) to relaxor (x = 0.10–0.20) and then to paraelectric state (x = 0.25–0.35) at room temperature, indicated by PIE loops analysis, associated with greatly enhanced dielectric temperature stability. For the samples with x = 0.25–0.35, the temperature coefficient of capacitance (TCC) was found <11% in an ultra‐wide temperature range of ?60°C–400°C with moderate dielectric constant and low dielectric loss, promising for temperature stable capacitor applications.  相似文献   

8.
The effects of LB glass on the sintering behavior, structure, and dielectric properties for the Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 (BNTCN) ceramic were investigated. The results showed that the LB glass, as an effective sintering aid, successfully lowered the sintering temperature of BNTCN ceramic by formation of the liquid phase. Furthermore, the change of the structure and decrease in grain size had influences on the electrical conductivity, thermal stability, and microwave dielectric properties for the BNTCN ceramics doped LB glass. Finally, the excellent microwave dielectric properties with εr = 73.4, Q × f = 5277 GHz, and τf = +7.1 ppm/°C were obtained for samples sintered at 950°C when x = 5, indicating the BNTCN ceramic doped with 5 wt% LB glass is a promoting LTCC material.  相似文献   

9.
In this work, (1 − x)(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–xKTaO3 (x = 0–0.30) ceramics are developed for dielectric capacitor applications. The introduction of KTaO3 from x = 0 to 0.30 increases the tolerance factor t from 0.984 to 1.005 and causes the decrease of ferroelectric rhombohedral phase in the ceramics. Besides, a gradual structural change toward a higher symmetry can be detected, accompanied by the obvious domain refinement. In the aspect of electrical property, the strengthened dielectric relaxation leads to the greatly enhanced thermal stability of dielectric response. The decline in Ts from 98 to −96°C causes a significant widening of the low-temperature region with temperature-stable dielectric constant εr and low dielectric loss tan δ. The x = 0.30 ceramic shows a high εr (25°C) of 1094 with the temperature coefficient of capacitance ≤±15% over −70 to 200°C, which exceeds the X9R standard. Meanwhile, tan δ is less than 0.02 in a wide temperature range of −35 to 300°C. In addition, the ultrafine grain size of 290 nm, large bandgap of 3.22 eV, and high resistance of the x = 0.30 ceramic contribute to its electrical breakdown strength. A linear-like PE loop with the large discharged energy density WD ∼ 3.50 J/cm3 and high energy efficiency η ∼ 90.1% is obtained under 28 kV/mm at room temperature. The thermal stability of the energy storage performance is also satisfactory with the variation of WD less than 15% over −40 to 200°C, and the η is higher than 85%.  相似文献   

10.
《Ceramics International》2022,48(14):20251-20259
In this study, it is reported that various properties can be selectively derived in a pure (K0.5Na0.5)NbO3, KNN ceramics through optimizing the sintering temperature by the conventional sintering method. High piezoelectric, ferroelectric, and dielectric properties such as d33 = 127 pC/N, Pr = 31 μC/cm2, and εr = 767 are obtained at the sintering temperature of 1100 °C. On the contrary, the specimen sintered at 1130 °C does not show high piezoelectric and ferroelectric properties, but it is translucent with a transmittance of 22% and 57% at the wavelength of 800 and 1600 nm respectively and shows a very high dielectric constant εr of 881. The origin of the high piezoelectric constant owes to large remanent polarization and dielectric constant, and dense microstructure with uniform distribution of large grains with the conjunction of relatively large crystal anisotropy. On the other hand, dense microstructure with almost no porosity, highly compacted grain boundaries, uniform distribution of grains, and relatively low crystalline anisotropy are responsible for the translucency and large dielectric constant of the ceramic specimens. This study demonstrates that the lead-free KNN ceramic has the potential to show multiple noteworthy properties such as piezoelectric, ferroelectric, dielectric, and transparent properties. This work provides a pure KNN ceramic simultaneously with high piezoelectric and transparent characteristics prepared only by using the conventional sintering method at a moderate sintering temperature for the first time in the literature.  相似文献   

11.
The 0.968[(K0.48Na0.52)]Nb0.95+xSb0.05O3–0.032(Bi0.5Na0.5)ZrO3 [KNNxS–BNZ] lead‐free ceramics with nonstoichiometric niobium ion were fabricated via conventional solid‐state sintering technique and their piezoelectric, dielectric and ferroelectric properties were investigated. When x = 0.010, enhanced piezoelectric properties (d33 ≈ 421 pC/N and kp ≈ 0.47) were obtained due to the construction of rhombohendral—tetragonal phase boundary near room temperature. The KNNxS–BNZ ceramics possesses enhanced Curie temperature (Tc) with improved piezoelectric constant. A large d33 of ~421 pC/N and a high Tc ~256°C can be simultaneously induced in the ceramics with x = 0.010. Especially, good thermal stability was observed in a broad temperature range. The results indicated that our work could benefit development of KNN‐based ceramics and widen their application range.  相似文献   

12.
Dense nanocrystalline barium strontium titanate Ba0.6Sr0.4TiO3 (BST) ceramics with an average grain size around 40 nm and very small dispersion were obtained by spark plasma sintering at 950°C and 1050°C starting from nonagglomerated nanopowders (~20 nm). The powders were synthesized by a modified “Organosol” process. X‐ray diffraction (XRD) and dielectric measurements in the temperature range 173–313 K were used to investigate the evolution of crystal structure and the ferroelectric to paraelectric phase transformation behavior for the sintered BST ceramics with different grain sizes. The Curie temperature TC decreases, whereas the phase transition becomes diffuse for the particle size decreasing from about 190 to 40 nm with matching XRD and permittivity data. Even the ceramics with an average grain size as small as 40 nm show the transition into the ferroelectric state. The dielectric permittivity ε shows relatively good thermal stability over a wide temperature range. The dielectric losses are smaller than 2%–4% in the frequency range of 100 Hz–1 MHz and temperature interval 160–320 K. A decrease in the dielectric permittivity in nanocrystalline ceramics was observed compared to submicrometer‐sized ceramics.  相似文献   

13.
(1?x)(K0.5Na0.5)NbO3xBa2NaNb5O15 [(1?x)KNN–xBNN, 0 ≤ x ≤0.1] ceramics were prepared by solid‐state reaction method. X‐ray diffraction analysis of the ceramics revealed that the crystal structure changed from orthorhombic to rhombohedral with increasing BNN content. Dielectric measurement showed that the ceramics exhibited good dielectric temperature stability over a wide temperature range. Basic mechanisms of the conduction and relaxation processes have been investigated using impedance spectroscopy analyses. It was concluded that the conduction and relaxation processes were thermally activated and oxygen vacancies were the possible ionic charge carriers at higher temperatures.  相似文献   

14.
In this work, Na0.5Bi0.5TiO3 (NBT) was used to improve the high temperature dielectric properties of Nb, Co-doped BaTiO3 (BT). Different x was selected (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4) to optimize the ratio of BT to NBT in (1 ? x) BT–xNBT solid solution. The dielectric constant of the original X7R material is about 4900 at room temperature, decreasing to 2500 with NBT addition (x = 0.2). Of important is that the temperature stability was improved with dielectric constant variation being less than ±15% up to 160 °C.  相似文献   

15.
《Ceramics International》2016,42(8):9949-9954
In this report, the effects of the calcination temperature of (K0.5Na0.5)NbO3 (KNN) powder on the sintering and piezoelectric properties of KNN ceramics have been investigated. KNN powders are synthesized via the solid-state approach. Scanning electron microscopy and X-ray diffraction characterizations indicate that the incomplete reaction at 700 °C and 750 °C calcination results in the compositional inhomogeneity of the K-rich and Na-rich phases while the orthorhombic single phase is obtained after calcination at 900 °C. During the sintering, the presence of the liquid K-rich phase due to the lower melting point has a significant impact on the densification, the abnormal grain growth and the deteriorated piezoelectric properties. From the standpoint of piezoelectric properties, the optimal calcination temperature obtained for KNN ceramics calcined at this temperature is determined to be 800 °C, with piezoelectric constant d33=128.3 pC/N, planar electromechanical coupling coefficient kp=32.2%, mechanical quality factor Qm=88, and dielectric loss tan δ=2.1%.  相似文献   

16.
In this study, the phase structure, microstructure and dielectric properties of Bi0.5(Na0.78K0.22)0.5(Ti1-xNbx)O3 lead-free ceramics prepared by traditional solid phase sintering method were studied. The second phase pyrochlore bismuth titanate (Bi2Ti2O7) was produced in the system after introduction of Nb5+. The dielectric constant of the sample (x = 0.03) sintered at 1130 °C at room temperature reached a maximum of 1841, and the dielectric loss was 0.045 minimum. It had been found that the K+ and Nb5+ co-doped Bi0.5Na0.5TiO3 (BNT) lead-free ceramics exhibited outstanding dielectric-temperature stability within 100–400 °C with Tcc ≤±15%. Result of this research provides a valuable reference for application of BNT based capacitors in high temperature field.  相似文献   

17.
Effect of isovalent Zr dopant on the colossal permittivity (CP) properties was investigated in (Zr + Nb) co‐doped rutile TiO2 ceramics, i.e., Nb0.5%ZrxTi1?xO2. Compared with those of single Nb‐doped TiO2, the CP properties of co‐doped samples showed better frequency‐stability with lower dielectric losses. Especially, a CP up to 6.4 × 104 and a relatively low dielectric loss (0.029) of x = 2% sample were obtained at 1 kHz and room temperature. Moreover, both dielectric permittivity and loss were nearly independent of direct current bias, and measuring temperature from room temperature to around 100°C. Based on X‐ray photoelectron spectroscopy, the formation of oxygen vacancies was suppressed due to the incorporation of Zrions. Furthermore, it induced the enhancement of the conduction activation energy according to the impedance spectroscopy. The results will provide a new routine to achieve a low dielectric loss in the CP materials.  相似文献   

18.
Ceramics in the solid solution system, (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3, were prepared by a conventional mixed oxide route. Single‐phase perovskite‐type X‐ray diffraction patterns were observed for compositions x < 0.6. A change from tetragonal to single‐phase cubic X‐ray patterns occurred at x ≥ 0.1. Dielectric measurements indicated relaxor behavior for x ≥ 0.1. Increasing the Bi(Mg0.5Ti0.5)O3 content improved the temperature sensitivity of relative permittivity ?r at high temperatures. At x = 0.5, a near‐plateau relative permittivity, 835 ± 40, extended across the temperature range, 65°C–550°C; the permittivity increased at x = 0.6 to 2170 ± 100 for temperatures 160°C–400°C (1 kHz). The corresponding loss tangent, tanδ, was ≤0.025 for temperatures between 100°C and 430°C for composition x = 0.5; at x = 0.6, losses increased sharply at >300°C. Comparisons of dielectric properties with other materials proposed for high‐temperature capacitor applications suggest that (1 ? x)Ba0.8Ca0.2TiO3xBi(Mg0.5Ti0.5)O3 ceramics are a promising base material for further development.  相似文献   

19.
Na/Bi stoichiometry plays crucial role in determining various properties of sodium bismuth titanate-based system. In this work, we have synthesised lead free (Na0.5Bi0.5)1+x TiO3 (x?=?0, 0.02 and 0.05) ceramics by sol-gel method and systematically presented structural, dielectric and ferroelectric properties at different sintering temperature. Single phase perovskite structure with rhombohedral symmetry (R3c) is obtained for all compositions from low (850°C) to maximum (1150°C) sintering temperature. The shifting of x-ray diffraction peaks and characteristic perovskite metal-oxide vibrational band (~627?cm?1) in Fourier Transform Infra-red spectra suggests compression or expansion of crystal lattice with Na/Bi non-stoichiometry. Excess of Na/Bi comprises dense crystal growth as compared to pure Na0.5Bi0.5TiO3 composition suggesting compensation of volatile elements loss during heat treatment whose impact has also been observed in dielectric as well as ferroelectric properties. It is observed that Na0.51Bi0.51TiO3 sample with x?=?0.02 exhibits better structural, dielectric and ferroelectric properties in whole range of sintering temperature.  相似文献   

20.
In this work, novel series of (1 ? x)Li2MO4xTiO2 (M = Mo, W; x = 0.3, 0.4, 0.45, 0.5, 0.6) ceramics were developed for microwave dielectric application. They were prepared via the mixed‐oxide process and the phase composition, microstructures, sintering behaviors, and microwave dielectric properties were investigated. The X‐ray diffraction (XRD) pattern and scanning electron microscope analysis indicated that the Li2MO4 (M = Mo, W) did not react with rutile TiO2 and a stable two‐phase composite system Li2MO4–TiO2 (M = Mo, W) was formed. The XRD pattern of cofired ceramics revealed that some parts of Li2MoO4 phase and very small part of Li2WO4 phase react with Ag to form Ag2MoO4 phase and Ag2WO4 phase, respectively. At x = 0.45–0.5, temperature stable microwave dielectric materials with low sintering temperature (700°C–730°C) were obtained: εr = 10.6–11.0, Qf = 30 060–32 800 GHz, and temperature coefficient of resonant frequency ~0 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号