首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(6):8177-8185
To protect the high-temperature components of gas turbines, 6–8 wt.% yttria stabilised zirconia (YSZ) has been extensively used as a thermal barrier coating (TBC) material. However, its application is severely limited at high temperatures because of zirconia phase transition and sintering densification above 1200 °C. This study developed modified YSZ with enhanced high-temperature thermal properties owing to the addition of various rare-earth doping elements. Among the various rare earth-doped compositions, all the thermal properties were significantly improved in compositions containing scandium, gadolinium, and dysprosium. Furthermore, in the selected compositions, the high-temperature thermal properties were analysed under heat treatment conditions of 1300 °C, with a target turbine inlet temperature (TIT) of 1500 °C. The high-temperature phase stability of the tetragonal phase was significantly improved in the newly developed compositions, and they exhibited glass-like low thermal conductivity (~0.984 W/mK) due to the influence of lattice distortion caused by the differences in the substituent-ion mass and size, and the oxygen vacancies. Moreover, there was notable improvement in the thermal expansion coefficient (~11 × 10?6/K) and resistance to high-temperature densification.  相似文献   

2.
The high porosities and low densities of ceramic aerogels offer outstanding insulative performance in applications where weight is a critical factor. The high surface area-to-volume ratios and specific surface areas provide extremely low thermal conductivity, but also contribute to rapid densification of the pore structure at elevated temperatures. This densification diminishes their favorable properties and inhibits use of aerogels in high-temperature applications. This work contributes to a design framework for thermally stable aerogels via the study of dopant chemistry (Y, Yb, Gd, Ca, Ce) in zirconia aerogels. The structural evolution was studied through 1200°C using nitrogen physisorption, scanning electron microscopy, and X-ray diffraction. The role of dopant identity and concentration in thermal stability was elucidated. In the context of the design framework, dopant chemistry is an aggregate for many closely related material properties, each of which may contribute to aerogel structural evolution. To develop a truly predictive design framework for ceramic-based aerogels, systematic and comprehensive evaluation of thermodynamic and kinetic properties must be performed in conjunction with studies on structural evolution.  相似文献   

3.
The present work aimed to reduce the microstructure heterogeneity inherent to flash sintering by using alumina blankets as a thermal insulator around ZnO cylindrical samples during the sintering process, under different electric field conditions. Thermal insulation significantly reduced the flash onset temperature and the grain size heterogeneity. For higher electric fields, a temperature reduction as high as 480 °C was observed, which also led to lower densification. These findings were discussed in terms of changes in the heat loss dynamics coupled with the adsorbed water retention, both promoted by the applied thermal insulation. A model to estimate the temperature at stage III of flash sintering was proposed. The final temperature reached with thermal insulation did not differ significantly from the ones without it. Thus, thermal insulation could represent an alternative route to flash sinter materials with lower furnace temperatures with energy savings up to 78 % and a more homogeneous microstructure.  相似文献   

4.
High emissivity coating plays a critical role in thermal protective system, which can radiate a large amount of aero-convective heat. Silica sol bonded MoSi2-SiC-Al2O3 (S-MSA) coating was proved to be promising for mullite fibrous insulation. However, the bonding mechanisms of the coating at elevated temperatures are not clear. In this work, the S-MSA coatings were heat-treated at temperatures from 600 °C to 1500 °C to reveal the bonding mechanisms at elevated temperatures. The S-MSA coatings go through a relatively stable stage (600 °C–1000 °C), a crystallization stage (1100 °C–1200 °C), and a densification stage (1300 °C–1500 °C) at ever increasing temperatures. Results show that both the contact damage resistance and the bonding strength of the calcined coatings exhibit a decrease followed by an increase at elevated calcination temperatures, with the inflection point at 1200 °C, corresponding to the transition temperature of the bonding mechanisms from 600 °C to 1500 °C.  相似文献   

5.
Densification and grain growth of alumina were studied with yttria or yttrium-aluminum garnet (YAG) additives at the relatively low temperatures of 1200°–1300°C. Yttria doping was found to inhibit densification and grain growth of alumina at 1200°C and, depending on dopant level, had a lesser effect at 1300°C. At 1200°C, yttria inhibits densification more than it hinders grain growth. The rate of grain growth increases faster with temperature than the rate of densification. Alumina-YAG particulate composites were difficult to sinter, yielding relative densities of only 65% and 72% after 100 h at 1200° and 1300°C, respectively. Pure YAG compacts exhibited essentially no densification for times up to 100 h at 1300°C.  相似文献   

6.
《Ceramics International》2023,49(19):31891-31897
Layered materials exhibit competitively low thermal conductivity along the out-of-plane direction. The solution process is a promising method for preparing stacked structures. However, the thermal stability of the layered materials is poor after processing in solution, thus hindering their applications at high temperatures. One of the solutions to improve the thermal stability of layered structures is to expand the interlayer distance by inserting large-size metal ions. In this work, we studied the thermal properties of Cs+ intercalated layered niobate obtained by the ion-exchanged process. The layered structure of the Cs+ intercalated layered niobate survives after thermal treatment even at 1200 °C. The room temperature thermal conductivity of as prepared stacked Cs–HCa2Nb3O10 is as low as 0.11 W m−1 k−1. Upon thermal annealing, the thermal conductivity increases. After annealing at 1200 °C, the value is 0.90 W m−1 k−1. The finding suggests Cs+ intercalated layered niobate is a promising material for high-temperature insulation applications.  相似文献   

7.
Nano-sized 8 mol% yttria stabilized zirconia (YSZ) powders were synthesized by the combustion method using two different fuels (urea and glycine). The effect of the nature and amount of the fuel was investigated on the phase structure, particle size and microstructure of the resulted YSZ ceramics. The results showed that YSZ powders synthesized using urea presented larger crystallite size and lower specific surface area than those derived from glycine route. This behavior is closely related to the combustion flame temperature. The elevated temperature during combustion synthesis with urea favored the formation of large aggregates, instead of loose and porous particles as observed for glycine route. As a consequence, the best result in terms of densification was obtained for the pellets prepared by sintering of powders synthesized through glycine route.  相似文献   

8.
《Ceramics International》2022,48(24):36287-36296
Multifunctional aerogels with high porosity and good thermal insulation have attracted much attention in the field of energy and aerospace engineering. In this work, a three-dimensional BN fiber aerogel with hierarchically porous structure was prepared through a freeze-drying combined with in-situ carbothermal reduction nitridation route. The synthesized BN fiber aerogel exhibits a specific surface area of 154.3 m2/g, a high porosity of 96.8% and hydrophobicity. Moreover, the BN fiber aerogel shows a low thermal conductivity of 0.051 W/(m·K) and excellent thermal insulation properties owing to its hierarchical porous structure. Particularly, the BN fiber aerogel still maintains its low thermal conductivity and a rather high mechanical strength after re-heated at 1473 K for 3 h in Ar atmosphere, suggesting excellent high-temperature service performance. The successfully developed multifunctional BN fiber aerogel holds promising potential in high-temperature thermal insulation fields.  相似文献   

9.
A single-step and all-colloidal deposition method to fabricate yttrium-stabilized zirconia (YSZ)-inverse photonic glasses with 3 μm pores was developed. The process is based on electrostatic attraction and repulsion in suspension, controlled by surface charge of polystyrene (PS) microspheres and YSZ nanoparticles, used as pore templates and matrix material, respectively. The pH was used as a tool to change surface charges and particle-particle interactions. Photonic glass films with 3 μm pores yielded broadband omnidirectional reflection over the wavelengths of 1–5 μm, relevant for thermal radiation at temperatures around 1200 °C. These highly porous materials maintained their structural stability and reflectance after being annealed at 1200 °C for 120 h.  相似文献   

10.
《Ceramics International》2022,48(9):12408-12414
Ceramic fibrous membranes have promising application in gas solid filtration and in areas requiring high thermal insulation, as well as catalyst supports, owing to their high porosity and low thermal conductivity. However, achieving flexible ceramic fibrous membranes that are stable at high temperatures remains a challenge. In the present work, a CaZrO3 fibrous membrane with excellent stability at 1200 °C and good flexibility at 1100 °C was achieved using a combination of sol-gel and electrospinning methods. The thermal decomposition process and microstructure evolution of CaZrO3 precursor fibers at high temperatures were discussed. The single orthorhombic phase of CaZrO3 fibers was stable up to 1400 °C. Furthermore, the CaZrO3 fibrous membrane exhibited excellent alkaline resistance. The excellent thermal stability and flexibility of the CaZrO3 fibrous membrane make it a promising candidate for high-temperature applications.  相似文献   

11.
Mullite nanofibers with small diameter and high surface area are an ideal candidate as the reinforcements in composite materials, and have promising applications in the fields of catalysis, filtration, thermal storage and so forth. In this work, electrospun mullite nanofibers were successfully synthesized using a hybrid mullite sol. The morphology and microstructure of fibers calcined at different temperatures were investigated. The morphology of fibers synthesized at 900 °C is porous with coarse surface, and after crystallization it becomes compact with smooth surface. The densities of fibers increase with the increasing temperatures. At 1200 °C the surface of fibers becomes coarse again, as a result of the grain growth of mullite. The crystallization path of fibers was revealed that the Al-rich mullite (4Al2O3·SiO2) together with amorphous silica formed at 1000 °C, changed into mullite with higher silica contents as temperature further increased, and finally transformed into a stable 3Al2O3·2SiO2 phase at 1200 °C. During this crystallization process, the flow of amorphous silica phase and the formation of mullite crystal structure benefit the densification of fibers, leading to the resultant fibers with fine and compact microstructure. The present findings can provide a guideline for the preparation of the promising high-mechanical mullite nanofibers and the synthesized nanofibers display great potential as reinforcements in structural ceramic composites.  相似文献   

12.
Alumina and aluminosilicate aerogels offer potential for use at temperatures above 700°C, where silica aerogels begin to sinter. Stability of alumina and aluminosilicate pore structures at high temperatures is governed by the starting aerogel structure, which, in turn is controlled by the synthesis route. Structure, morphology, and crystallization behavior are compared for aerogels synthesized from AlCl3 and propylene oxide with those synthesized from a variety of boehmite precursors. The aerogels possessing a crystalline boehmite structure in the as-synthesized condition retained mesoporous structures to temperatures of 1200°C, while the AlCl3-derived aerogels, although exhibiting higher as-synthesized surface areas, crystallized and densified at 980–1005°C.  相似文献   

13.
《Ceramics International》2019,45(13):16470-16475
Porous SiC ceramics combine the properties of both SiC ceramics and porous materials. Herein, we design a facile method via pressureless sintering at relatively low temperatures for the synthesis of porous SiC ceramics. In the synthesis process, phosphoric acid was used as the sintering additive that reacted with SiO2 on the surface of SiC to form phosphates. The formed phosphates acted as a binder to connect the SiC particles. At a fixed temperature, the phosphates were partially decomposed and released a large amount of gas. This changed the pore structure of the ceramics and greatly improved their porosity. Finally, we obtained the porous SiC ceramics with high porosity and high strength. We investigate the effects of H3PO4 content on the phase composition, microstructure, porosity, mechanical properties and thermal expansion coefficient of the prepared porous SiC ceramics. It was shown that at the sintering temperature of 1200 °C, the highest porosity of the samples can reach 70.42% when the H3PO4 content is 25 wt%, and their bending strength reaches 36.11 MPa at room temperature when the H3PO4 content is 15 wt%. In addition, the porous SiC ceramics show good high-temperature stability with a bending strength of 42.05 MPa at 1000 °C and the thermal expansion coefficient of 3.966 × 10−6/°C.  相似文献   

14.
Ceramic aerogels possess intriguing thermophysical properties which make them excellent candidates for high temperature thermal insulators. However, their properties can degrade at high temperature because of crystallization phenomena or because of densification (causing a sensible reduction of their specific surface area and porosity).The polymer derived ceramic (PDC) route is a relatively new way of developing ceramic aerogels. Several aspects influence the properties of the final product when dealing with preceramic polymers, among them their chemical composition and molecular architecture.In this work, we investigated the possibility of producing aerogels belonging to the SiCN system from polysilazanes mixtures, namely perhydropolysilazane (PHPS) and a methyl/vinyl-containing polysilazane, namely Durazane 1800®, thus changing the C/Si ratio of the amorphous pyrolyzed products. It is shown that the chemical composition of the ceramic aerogel affects the main properties of the porous materials, such as thermal stability and specific surface area (SSA). Results show that the presence of carbon in the aerogels inhibits crystallization of Si3N4 up to 1600 °C in N2 and allows to maintain a SSA of ~90 m2/g up to this temperature.  相似文献   

15.
Highly porous, heat resisting ceramic aerogels are considered as promising materials for high-temperature insulation. However, the general structural characteristics of ceramic aerogel, such as poor mechanical strength and transparency to infrared radiation, pose a major obstacle to their practical application. In this paper, we report a general strategy to prepare hollow mullite fiber (HMF) structures by coaxial electrostatic spinning and grow TiO2 nanorods (TiO2/NAs) in situ on HMF. The ternary composite ceramic aerogel material was prepared by filling the pores of HMF-TiO2/NAs with SiCN aerogel. The TiO2/NAs increased the fiber/aerogel interfacial bonding of the composite (0.392 MPa, 30% strain) and improved the IR transmittance (∼0%, 1200 ℃) without sacrificing their low density and thermal conductivity. In addition, low thermal conductivity (0.041 W/(m·K), 1200 °C) and excellent high-temperature insulation properties allow the composite aerogel to meet the urgent need for lightweight, high-strength, high-temperature insulation systems for spacecraft.  相似文献   

16.
The present work describes a synthesis route for bulk Ta4AlC3 MAX phase ceramics with high phase purity. Pressure-assisted densification was achieved by both hot pressing and spark plasma sintering of Ta2H, Al and C powder mixtures in the 1200–1650 °C range. The phases present and microstructures were characterized as a function of the sintering temperature by X-ray diffraction and scanning electron microscopy. High-purity α-Ta4AlC3 was obtained by hot pressing at 1500 °C for 30 min at 30 MPa. The β-Ta4AlC3 allotrope was observed in the samples produced by SPS. The Young’s modulus, Vickers hardness, flexural strength and single-edge V-notch beam fracture toughness of the high-purity bulk sample were determined. The thermal decomposition of Ta4AlC3 into TaCx and Al vapour in high (˜10−5 mbar) vacuum at 1200 °C and 1250 °C was also investigated, as a possible processing route to produce porous TaCx components.  相似文献   

17.
This paper evaluated mechanical and thermal stability of alkali-activated materials obtained from metakaolin and alternative silica sources, such as rice husk ash (RHA) and silica fume (SF), and were reinforced with recycled ceramic particles (RP) obtained by grinding bricks. Specimens were produced, and after 7 days of curing, they were exposed to temperatures between 300 and 1200°C to determine the influence that different percentages of RP had on the mechanical behavior and microstructure of the produced composites. The results showed a reduction in the linear contraction by 10.22% with 20 wt% RP and that the reinforcing materials improved the mechanical performance of the geopolymers after exposure to high temperatures; the compressive strengths reached 137.7 (±11.4)  MPa after being exposed to 1200°C for the matrix based on RHA and 180.6 (±19.15) MPa after being reinforced with 20 wt% RP. The improvement was mainly due to densification and the formation of crystalline products such as leucite, kalsilite, and mullite.  相似文献   

18.
In this work, the spark plasma sintering (SPS) of commercial yttria nanopowder is investigated. The SPS parameters such as sintering temperature, applied pressure, and dwell time are varied. Densification without grain growth occurring at occurred up to a sintering temperature of 1400°C and grain growth without further densification taking place at the higher temperature. The optimum sample was obtained at a temperature of 1400°C with a pressure of 70 MPa and dwelling time of 15 minutes. The highest relative density of 99.8% and the average grain size of 1.26 μm were obtained at 1400°C. The yttria ceramic annealed at 1200°C had the in-line transmission of 5%-70% and 70%-82% in the visible and infrared wavelength region, respectively. The measurements of hardness and fracture toughness characteristics of the transparent yttria ceramic showed 9.2 GPa and 2.24 MPa.m1/2, respectively.  相似文献   

19.
Ceramic foams with multi-scale pores and large specific surface area have received extensive attention due to their unique structure and superior properties. Considering that there are still challenges to synthesize porous ceramics with large specific surface area, a novel ceramic foam material with ultra-large specific surface area has been prepared using hollow silica mesoporous spheres (HMSSs) as building block in this work. These building blocks were made weakly hydrophobic in order to produce HMSS particle stabilized foams. The foams exhibit a uniform primary macropore structure, which is composed of a three dimensional HMSS-assembled network, via HMSS-stabilized foams. The influence of sintering temperature on the microstructure and properties of HMSS foams is investigated. The HMSS foams exhibit highest specific surface area of 1733 m2/g, attributed to the radial mesopores in HMSS shell, when sintered at between 500°C and 800°C. This specific surface area is much higher than that of existing ceramic materials. The uniform pore structure and ultra-large specific surface area make it a promising lightweight material in potential application fields, including catalyst, adsorption, fire-resistant thermal insulation, and load and control release system.  相似文献   

20.
Silica-doped alumina aerogels offer the potential alternative to the applications as thermal insulators, catalysis, or catalytic support at elevated temperatures. However, the production process of silica-doped alumina aerogels was complicated and time-consuming. We developed a one-step precursor-to-aerogel method of silica-doped alumina aerogels with high specific surface area and thermal stability. Compared to conventional methods, the developed method reduced time and solvent waste of alumina-based aerogels production. Here, we investigated the alumina aerogels doped with silica to stabilize γ-phase at higher temperatures. XRD, FTIR, TEM, TG-DSC, and BET analysis results showed that silica stabilized the γ-Al2O3 at 1200 °C. The stabilization mechanism analysis showed that silica addition could significantly hinder the contact among alumina particles and the formation of necks in the sintering process, thereby retarding the transition of γ–θ phase and maintaining the high specific surface area at elevated temperatures. Silica and alumina particles formed mullite at 1200 °C, which could suppress α-phase transformation. In addition, silica-doped alumina aerogels exhibited the high specific surface area of 311 m2/g at 1000 °C and 146 m2/g at 1200 °C when the silica content was in the range of 10.6–13.1 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号