首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanical and mechanochemical properties of soda lime silica (SLS) glass surfaces can vary with the sodium ion (Na+) concentration in the subsurface region. Changes in these properties were studied upon modification of Na+ concentrations in the SLS glass by thermal poling. In Part‐1, it is found that the Na+‐depleted and Na+‐gradient layers could be formed at the anode and cathode sides, respectively. Here in Part‐2, we show that Na+ ions play a pivotal role in the mechanochemical wear property upon lateral shear stress. The Na+‐depleted glass wear more readily as relative humidity (RH) increases, while Na+‐gradient glass becomes resistant to wear at high RH. It is also found that the Na+‐gradient glass surface has a higher elastic modulus and hardness with very little change in fracture toughness compared to the pristine surface. The Na+‐depleted glass surface shows a lower elastic modulus and hardness; but its fracture toughness is significantly improved, which might be due to a larger densification capacity of Na+‐depleted layer.  相似文献   

2.
The polishing of oxide glass in aqueous solution is sensitive to not only the mechanical conditions applied by abrasives but also the chemistry of solution. This study elucidates the synergistic interactions of mechanical and chemical effects—especially, the synergetic effects of surface mechanochemical wear and subsurface dissolution are studied by measuring the material removal rate of soda lime silica (SLS) glass upon rubbing with a Pyrex glass ball in noncorrosive (neutral pH) in corrosive solutions (pH 10 and 13 NaOH) as a function of sliding speed. Based on the synergetic model of surface wear and subsurface dissolution, it is found that the mechanochemical surface reaction dominates the wear behavior of SLS glass in neutral and pH 10 solution conditions; the wear of SLS glass in pH 10 is enhanced, compared to the neutral pH case, due to the presence of OH- ions at the sliding interface. In the case of pH 13, the dissolution of the densified subsurface region, which is formed due to interfacial friction during the surface wear, becomes significant, further enhancing the material removal yield. The finding provides an insight for designing an efficient polishing process in manufacturing of oxide glass materials with a good surface finish.  相似文献   

3.
As a means to elucidate the mechanical stress effect on the durability of soda lime silicate (SLS) float glass, a thin glass plate under flexural stress was investigated with X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (SR-IR) spectroscopy, nanoindentation, and tribo-testing. A lab-built four-point bending rig was employed to create compressive or tensile stress (around 40 MPa) on the air-side surface of SLS glass. XPS analysis showed that electric field-induced sodium ion migration is greatly enhanced in both compressive and tensile stress surfaces. The SR-IR analysis of the Si-O-Si stretch mode revealed that the structural distortion of the silicate network appears to be larger under compressive stress than tensile stress. The elastic and plastic responses of the SLS surface to nanoindentation were significantly altered under the flexural stress conditions even though the magnitude of the flexural stress was less than 0.7% of the applied indentation stress. Compared to the stress-free surface, the resistance to mechanochemical wear at 90% relative humidity deteriorated under the compressive stress condition, while it just became more scattered under the tensile stress condition. Even though the applied flexural stress was very small, its impact on chemical and structural properties could be surprisingly large. Combining all results in this study and previously published works suggested that the changes observed in nanoindentation and mechanochemical wear behaviors may be associated with the strain in the Si-O bonds of the silicate network.  相似文献   

4.
This study employed thermal poling at 200°C as a means to modify the surface mechanical properties of soda lime silica (SLS) glass. SLS float glass panels were allowed to react with molecules constituting ambient air (H2O, O2, N2) while sodium ions were depleted from the surface region through diffusion into the bulk under an anodic potential. A sample poled in inert gas (Ar) was used for comparison. Systematic analyses of the chemical composition, thickness, silicate network, trapped molecular species, and hydrous species in the sodium‐depleted layers revealed correlations between subsurface structural changes and mechanical properties such as hardness, elastic modulus, and fracture toughness. A silica‐like structure was created in the inert gas environment through restructuring of Si–O–Si bonds at 200°C in the Na‐depleted zone; this occurred far below Tg. This silica‐like surface also showed enhancement of hardness comparable to that of pure silica glass. The anodic thermal poling condition was found so reactive that O2 and N2 species can be incorporated into the glass, which also alters the glass structure and mechanical properties. In the case of the anodic surfaces prepared in a humid environment, the glass showed an improved resistance against crack formation, which implies that abundant hydrous species incorporated during thermal poling could be beneficial to improve the toughness.  相似文献   

5.
The effects of exchanging Na+ with K+ on the mechanical and mechanochemical properties of a soda lime silica (SLS) glass were investigated. It is known that replacing smaller modifier ions with bigger ions in the silicate glass network, at temperatures below the glass transition (Tg), produces a compressive stress in the subsurface region that enhances resistance to mechanical damages. This study found that when Na+ ions in SLS are exchanged with K+ ions at 400°C, the hardness, indentation fracture toughness, and crack initiation load of the surface are increased, which is consistent with the chemical strengthening effect. However, the resistance to mechanochemical wear in a near-saturation humidity condition (relative humidity RH = 90%) is deteriorated. When K+ ions are exchanged back with Na+ ions at 350°C, the wear resistance in high humidity conditions is recovered. These results indicate that the improvement of mechanical properties under indentation normal to the surface is irrelevant with the resistance to mechanochemical wear under tangential shear at the surface. Based on the analysis of the surface chemical composition, silicate network structure, and hydrogen-bonding interactions of hydrous species in the subsurface region, it is proposed that the leachable Na+ associated with non-bridging oxygen and subsurface hydrous species in the silicate network play more important roles in the mechanochemical wear of SLS at high RH.  相似文献   

6.
Strong and conducting glass fibers are produced from reduced graphene oxide and soda-lime-silica (rGO/SLS) glass by a novel process of cladding drawing. GO nanosheets are bound to the SLS glass particles through an electrostatic assembly and are well distributed in the hot-pressed rGO/SLS bulk composites. These bulks are subsequently BN-cladded, from which rGO/SLS fibers are drawn. Results confirm the rGO sheets are well dispersed inside the fibers and become wrinkled due to the contraction of glass matrix while cooling. Mechanical properties of as-prepared fibers have been greatly improved, with tensile strength two times that of pure SLS fibers. As rGO concentration increases, a conducting network of rGO sheets forms along the fibers, which can survive intensive wear. Thanks to the wrinkled configuration of rGO sheets, the conductivity of the composite fibers is extremely sensitive to temperature, nearly 25 times that of flat rGO sheets, making the fibers potential built-in temperature sensors.  相似文献   

7.
It is generally well known that not only the sodium itself, but also the non‐bridging oxygen (NBO) sites associated with sodium ions are largely responsible for the surface reactivity of soda‐lime‐silica (SLS) glass. Thermal poling can modify the distribution of sodium in the subsurface region. In this work, a commercial SLS float glass was thermally poled using nonblocking electrodes in air. The Na+?depleted anode surface and the Na+?gradient cathode surface were characterized using a variety of methods to find the compositional, structural and morphological effects of thermal poling. Of particular significance is the use of nondestructive vibrational spectroscopy methods, which can lead to new and improved understanding of water interactions with sodium and its sites in the glass. It was found that during thermal poling, the Na+?depleted glass network on the anode side undergoes condensation reactions of NBO sites accompanied by the increase in concentrations of silanol (SiOH) groups and molecular water species. In contrast, silanol and water species do not increase and the silicate network change is negligible in the Na+?gradient cathode side. Vibrational sum frequency generation (SFG) spectroscopy analysis revealed the difference in distributions of hydrous species in the Na+?depleted and Na+?gradient surfaces. The structural information of the thermally‐poled surfaces provides critical insights needed to understand the mechanical and mechanochemical properties of the Na+?concentration modified SLS glass surfaces reported in the Part 2 companion paper.  相似文献   

8.
Physical flaws and defects on glass surfaces are known to reduce the mechanical strength and chemical durability of glass. The formation of surface defects depends not only on the mechanical conditions of the physical contact but also on the environment in which the contact is made. In this study, the nanoscratch behavior of soda lime silica (SLS) glass was investigated in 10% and 60% relative humidity (RH) conditions. Based on the evolution of friction and scratch depth, the deformation of SLS glass surface could be divided into four regimes: elastic deformation and recovery (E), RH-independent mild plastic deformation (P-1), RH-dependent intermediate plastic deformation (P-2), and RH-independent severe plastic formation (P-3). It is quite surprising to observe that plastic deformation of the glass surface has dependence on RH of the environment (outside the glass) because plastic deformation is the process occurring below the surface (inside the glass) by the externally applied load. From this result, it can be inferred that frictional energy dissipation mode at the sliding interface, which is a function of adsorbed water molecules, influences the subsurface deformation mode. Although friction, wear, and subsurface deformation/damage are all coupled, there is no direct one-on-one correlation among them.  相似文献   

9.
采用氢氟酸基溶液对玻璃进行腐蚀,研究酸腐蚀对玻璃强度的影响。对新鲜玻璃表面施加有机涂层,研究了玻璃表面的微观结构及力学性能。结果表明,酸腐蚀可以提高玻璃的强度,处理10 min后强度达到最大,但是强度稳定性差,表面易受损伤,在酸处理后的表面施加有机涂层可以极大提高玻璃的强度。其增强机制是,涂层填充了玻璃裂纹空隙,起到治愈损伤的效果,同时泊松抑制效应也对玻璃强度的增加起了作用。与物理钢化及化学钢化相比,这种综合增强方法明显提高了玻璃的力学性能,同时降低了成本。  相似文献   

10.
建立了风栅中玻璃的冷却模型,数值模拟玻璃冷却的温度和应力变化规律,反演了不同季节风温时的合理匹配风压。结果表明,在玻璃淬冷过程,约3 s时玻璃表面拉应力达到最大,若该应力大于玻璃此时的抗拉强度,玻璃将破裂。此后玻璃从外到内降温速率逐渐减小,在约15~17 s时玻璃表层受内部影响减弱,表面应力趋于稳定。与钢化玻璃表面应力测试结果相比,数值模拟结果略小,但相对误差不超过5%。随冷却风温降低,玻璃钢化所需的风压逐渐减小。在玻璃钢化程度接近的情况下,风压随风温降低近似线性减小,钢化风压调节量与环境温度变化量的相关系数为0.103 kPa/K。  相似文献   

11.
隔热膜的性能测试及评价   总被引:1,自引:0,他引:1  
本文主要介绍了隔热膜性能的测试与评价方法,通过对不同隔热窗膜的光学性能、隔热性能、耐紫外辐照性能及表面硬度等性能测试与分析,研究了金属溅射膜和纳米涂布隔热膜的性能差异。此外还对比测试了单层、中空玻璃与贴膜玻璃的隔热性能,隔热效果明显不同。结果显示,隔热膜贴膜玻璃的隔热性能明显好于中空玻璃,纳米隔热膜相比溅射隔热膜有更高的可见光透过率。  相似文献   

12.
与化学钢化和物理钢化方法相比,喷雾钢化玻璃具有节能降耗、降低噪音和降低成本等一系列优点。但由于喷雾本身的复杂性,其换热机理与喷气淬冷钢化不同,受玻璃特殊的物理性质和现阶段测试手段的限制,所以实现喷雾淬冷钢化有着很大的技术难度。基于目前国内外相关研究结果,对钢化过程中的影响因素和喷雾冷却影响因素进行综述与分析,并通过试验验证了喷雾钢化玻璃的可行性。  相似文献   

13.
吴宗璠 《云南化工》2019,(5):146-147
随着手机、平板电脑等电子产业的迅速发展,超薄玻璃的需求量越来越大,对超薄玻璃的力学性能的要求也越来越高。化学钢化是一种能够提高玻璃表面机械强度的方法,化学钢化专利技术成为玻璃制造企业的研究热点。分析了国内外创新主体在中国申请的相关专利技术,探讨了在我国化学钢化专利技术的发展情况以及改善化学钢化效果的相关工艺因素。  相似文献   

14.
Stress and Structural Relaxation in Tempering Glass   总被引:4,自引:0,他引:4  
Temper stresses are brought about, primarily, by a partial relaxation of transient stresses generated by rapid cooling of the glass. Stress relaxation under nonisothermal conditions is competently handled by a mathematical tempering model, in which glass is treated as a simple viscoelastic material. However, this model proved inadequate in some respects since the properties of glass depend not only on its instantaneous temperature but also on its prior thermal history. A tempering model was therefore developed that incorporates both stress and structural relaxation. Predictions of this structural model are compared with experimental data on tempering and contrasted with predictions of the viscoelastic model. Such comparisons revealed that, typically, structural relaxation accounts for approximately 24% of the total residual temper stresses.  相似文献   

15.
喷雾钢化工艺理论上比气冷钢化工艺更节能,为了探究喷雾钢化工艺的实际节能效果,本文采用尺寸为40 mm×40 mm×5 mm的平板玻璃进行了气冷钢化和喷雾钢化试验。结果表明:与气冷钢化工艺相比,喷雾钢化工艺在冷却过程中至少节能25.06%;喷雾钢化工艺可以提高玻璃的钢化程度,即破碎后的颗粒数增加了至少8.91%,表面压应力提高了至少12.12%;随着雾载分数的增加,冷却时间减少,节能效果和钢化程度提高。  相似文献   

16.
Titania (TiO2) and doped TiO2 ceramic thin films were prepared on a glass substrate by a sol–gel and dip-coating process from specially formulated sols, followed by annealing at 460°C. The morphologies of the original and worn surfaces of the films were analyzed with atomic force microscopy (AFM) and scanning electron microscopy. The chemical compositions of the obtained films were characterized by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of TiO2 and doped TiO2 thin films sliding against Si3N4 ball were evaluated on a one-way reciprocating friction and wear tester. The AFM analysis shows that the morphologies of the resulting films are very different in nanoscale, which partly accounts for their tribological properties. XPS analysis reveals that the doped elements exist in different states, such as oxide and silicate, and diffusion took place between the film and the glass substrate. TiO2 films show an excellent ability to reduce friction and resist wear. A friction coefficient as low as 0.18 and a wear life of 2280 sliding passes at 3 N were recorded. Unfortunately, all the doped TiO2 films are inferior to the TiO2 films in friction reduction and wear resistance, primarily because of their differences in structures and chemical compositions caused by the doped elements. The wear of the glass is characteristic of brittle fracture and severe abrasion. The wear of the TiO2 thin film is characteristic of plastic deformation with slight abrasive and fatigue wear. The doped TiO2 thin films show lower plasticity than the TiO2 thin film, which leads to large cracks. The propagation of the cracks caused serious fracture and failure of the films.  相似文献   

17.
Thin films of Al2O3 and doped Al2O3 were prepared on a glass substrate by dip coating process from specially formulated ethanol sols. The morphologies of the unworn and worn surfaces of the films were observed with atomic force microscope (AFM) and scanning electron microscope (SEM). The chemical compositions of the obtained films were characterized by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of obtained thin films sliding against Si3N4 ball were evaluated and compared with glass slide on a one-way reciprocating friction tester. XPS results confirm that the target films were obtained successfully. The doped elements distribute in the film evenly and exist in different kinds of forms, such as oxide and silicate. AFM results show that the addition of the doped elements changes the structure of the Al2O3 films, i.e., a rougher and smoother surface is obtained. The wear mechanisms of the films are discussed based on SEM observation of the worn surface morphologies. As the results, the doped films exhibit better tribological properties due to the improved toughness. Sever brittle fracture is avoided in the doped films. The wear of glass is characteristic of brittle fracture and severe abrasion. The wear of Al2O3 is characteristic of brittle fracture and delamination. And the wear of doped Al2O3 is characteristic of micro-fracture, deformation and slight abrasive wear. The introduction of ZnO is recommended to improve the tribological property of Al2O3 film.  相似文献   

18.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

19.
Bacterial contamination of surfaces is a natural and spontaneous process that often results in the formation of biofilms. The extracellular matrix of biofilm is mostly composed of proteins, polysaccharides, and extracellular DNA and is responsible for the strong persistent ability of biofilm in the food industry. Despite cleaning and disinfection processes, persistent bacteria cause a major problem in food processing environments. Synthetic surfactants, mainly anionic surface-active agent, are commonly used as detergents, foaming agents, wetting agents, emulsifiers, and dispersants. Their tendency to adsorb to surfaces and interfaces and modify their surface tension, is considered among their main properties. They also have the ability to attach to bioactive macromolecules such as proteins, peptides, and DNA causing cell membrane damage. In order to estimate the adhesion kinetic and proliferation of pathogenic bacteria Staphylococcus aureus, the surface of glass was coated with anionic surfactant Sodium Lauryl Sulfate (SLS). Moreover, SLS was added in suspension with the culture medium. The physicochemical properties of the material were calculated using the contact angle measurement method and bacterial hydrophobicity using the microbial adhesion to hydrocarbons (MATH) test. The obtained results showed that the number of adhering cells increased gradually as a function of time. However, changing the surface properties of the glass and S. aureus has affected the rate of adherent cells with time as well as their organization. SLS inhibited the attachment of cells, whether it is added with the microbial suspension or at the surface of the support. Generally, the present article points to a relationship between the microbial adhesion, the surface chemistry of the solid material and the bacteria, and the suspension properties.  相似文献   

20.
Glasses containing monovalent species can be chemically strengthened by the replacement of smaller ions in the glass with larger external ions in the near glass surface. This type of ion exchange puts glass surface under high compressive stress (CS). Glass mainly fails from tension with the presence of surface flaws. Chemical strengthening can change the stress at the flaw tip from tension to compression and further stop the flaw from propagating. Glass damage resistance is therefore significantly improved. For the same glass composition, glass thermal histories can affect the magnitude and depth of the CS generated during ion exchange. In this study, the impact of thermal history on glass physical properties and ion exchange attributes in one alkali-containing glass formed by fusion draw process was investigated. Multiple thermal treatments were done to rewrite the glass thermal histories. Glass density, refractive index, and ion-exchange properties as a function of the thermal treatment were studied. It is concluded that ion exchange-related properties change dramatically with the glass thermal history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号