首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.  相似文献   

2.
The local transport characteristics and the global polarization curve for a self-made micro proton exchange membrane fuel cell (PEMFC) have been experimentally and numerically investigated in this paper. The micro-sensors are developed to measure the local fluid temperature, cell voltage, and current density and the fuel cell test system is used to measure the polarization curve. A three-dimensional (3-D) non-isothermal compressible computational fluid dynamics (CFD) full-cell model is also adopted to simulate the test micro PEMFC. This CFD model has been validated with these global and local data. The ionic conductivity is increased as the water content in the membrane increases, enhancing the cell performance. This positive effect of inlet fuel humidity on the cell performance is also captured by the CFD simulation model.  相似文献   

3.
The thermal–hydraulic characteristics of a proton exchange membrane fuel cell (PEMFC) are numerically simulated by a simplified two‐phase, multi‐component flow model. This model consists of continuity, momentum, energy and concentration equations, and appropriate equations to consider the varying flow properties of the gas–liquid two‐phase region in a PEMFC. This gas–liquid two‐phase characteristic is not considered in most of the previous simulation works. The calculated thermal–hydraulic phenomena of a PEMFC are reasonably presented in this paper, which include the distributions of flow vector, temperature, oxygen concentration, liquid water saturation, and current density, etc. Coupled with the electrochemical reaction equations, current flow model can predict the cell voltage vs current density curves (i.e. performance curves), which are validated by the single‐cell tests. The predicted performance curves for a PEMFC agree well with the experimental data. In addition, the positive effect of temperature on the cell performance is also precisely captured by this model. The model presented herein is essentially developed from the thermal–hydraulic point of view and can be considered as a stepping‐stone towards a full complete PEMFC simulation model that can help the optima design for the PEMFC and the enhancement of cell efficiency. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
A three-dimensional “full-cell” computational fluid dynamics (CFD) model is proposed in this paper to investigate the effects of different flow channel designs on the performance of proton exchange membrane fuel cells (PEMFC). The flow channel designs selected in this work include the parallel and serpentine flow channels, single-path and multi-path flow channels, and uniform depth and step-wise depth flow channels. This model is validated by the experiments conducted in the fuel cell center of Yuan Ze University, showing that the present model can investigate the characteristics of flow channel for the PEMFC and assist in the optima designs of flow channels. The effects of different flow channel designs on the PEMFC performance obtained by the model predictions agree well with those obtained by experiments. Based on the simulation results, which are also confirmed by the experimental data, the parallel flow channel with the step-wise depth design significantly promotes the PEMFC performance. However, the performance of PEMFC with the serpentine flow channel is insensitive to these different depth designs. In addition, the distribution characteristics of fuel gases and current density for the PEMFC with different flow channels can be also reasonably captured by the present model.  相似文献   

5.
In this study, the effect of clamping pressure on the performance of a proton exchange membrane fuel cell (PEMFC) is investigated for three different widths of channel. The deformation of gas diffusion layer (GDL) due to clamping pressure is modeled using a finite element method, and the results are applied as inputs to a CFD model. The CFD analysis is based on finite volume method in non-isothermal condition. Also, a comparison is made between three cases to identify the geometry that has the best performance. The distribution of temperature, current density and mole fraction of oxygen are investigated for the geometry with best performance. The results reveal that by decreasing the width of channel, the performance of PEMFC improves due to increase of flow velocity. Also, it is found that intrusion of GDL into the gas flow channel due to assembly pressure deteriorates the PEMFC performance, while decrease of GDL thickness and GDL porosity have smaller effects. It is shown that assembly pressure has a minor effect on temperature profile in the membrane-catalyst interface at cathode side. Also, assembly pressure has a significant effect on ohmic and concentration losses of PEMFC at high current densities.  相似文献   

6.
The configuration of fuel, air, and cooling water paths is one of the major factors that influence the performance of a proton exchange membrane fuel cell (PEMFC). In order to investigate the effects of these factors, a quasi-three-dimensional dynamic model of a PEMFC has been developed. For validation, simulation results are compared with experimental data in one-flow configuration case and show good agreement with the experimental cell performance data. Five different flow configurations are then simulated to systematically investigate the effects of fuel, air, and cooling channel configuration on the local current and species distribution. Voltage and power vs. current density for five different configurations are compared. The type 1 configuration, which has a fuel–air counter flow and an air-coolant co-flow, has the highest performance in all ranges of current density because the membrane remains the most hydrated. When the operating current density increases, the effects of temperature on membrane hydration slightly decrease. It is confirmed that fuel cell performance improves with increased humidity until flooding conditions appear. An interesting result shows that it is possible to lower the fuel cell operating temperature to improve fuel cell hydration, which in turn improves cell performance. In addition, the different flow configurations are shown to have an effect on the pressure losses and local current density, membrane hydration, and species mole fractions. These results suggest that the model can be used to optimize the flow configuration of a PEMFC.  相似文献   

7.
In this study, a general model of proton exchange membrane fuel cell (PEMFC) was constructed, implemented and employed to simulate the fluid flow, heat transfer, species transport, electrochemical reaction, and current density distribution, especially focusing on liquid water effects on PEMFC performance. The model is a three-dimensional and unsteady one with detailed thermo-electrochemistry, multi-species, and two-phase interaction with explicit gas–liquid interface tracking by using the volume-of-fluid (VOF) method. The general model was implemented into the commercial computational fluid dynamics (CFD) software package FLUENT® v6.2, with its user-defined functions (UDFs). A complete PEMFC was considered, including membrane, gas diffusion layers (GDLs), catalyst layers, gas flow channels, and current collectors. The effects of liquid water on PEMFC with serpentine channels were investigated. The results showed that this general model of PEMFC can be a very useful tool for the optimization of practical engineering designs of PEMFC.  相似文献   

8.
Property distribution and polarization characteristics of a proton exchange membrane fuel cell (PEMFC) under cathode starvation conditions were investigated numerically and experimentally for a unit cell. The polarization curves of a lab‐scale PEMFC were measured with increasing current density for different cell temperatures (40°C, 50°C, and 60°C) at a relative humidity of 100%. To investigate the local temperature, water content and current density on the membrane, and gas velocity in the channel of the PEMFC, numerical studies using the es‐pemfc module of the commercial flow solver STAR‐CD, which were matched with experimental data, were conducted. Temperature, current density on the membrane, and water content in the MEA were examined to investigate the effect of cell temperature on performance under the cathode starvation condition. At cathode starvation conditions, the performance of a higher cell temperature condition might drop significantly and the mean temperature on the membrane increase abruptly with increasing cell temperature or current density. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
This study performs numerical simulations to investigate the effects of buoyancy on the gas flow characteristics, temperature distribution, electrochemical reaction efficiency and electrical performance of a proton exchange membrane fuel cell (PEMFC) with a novel wave-like gas flow channel design. In general, the simulation results show that compared to the straight geometry of a conventional gas flow channel, the wave-like configuration enhances the transport through the porous layer and improves the temperature distribution within the channel. As a result, the PEMFC has an improved fuel utilization efficiency and an enhanced heat transfer performance. It is found that the buoyancy effect increases the velocity of the reactant fuel gases in both the vertical and the horizontal directions. This increases the rate at which the oxygen gas is consumed in the fuel cell but improves the electrical performance of the PEMFC. The results show that compared to the conventional straight gas flow channel, the wave-like gas flow channel increases the output voltage and improves the maximum power density by approximately 39.5%.  相似文献   

10.
In this paper, experimental and numerical investigations of the effects of polybenzimidazole (PBI) loading and operating temperature on a high-temperature proton exchange membrane fuel cell (PEMFC) performance are carried out. Experiments related to a PBI-based PEMFC are performed and a two-dimensional (2-D) simulation model is developed to numerically predict the cell characteristics. Variations of 5–30 wt% in PBI amount in the catalyst layer (CL) and 160–200 °C in cell temperature are considered. On the basis of the experimental and numerical results, the negative effect of PBI content and positive effect of operating temperature on the cell performance can be precisely captured. These effects can also be shown by measurements of the impedance spectrum and predictions of O2 concentration and current density distributions. In addition, non-uniform distributions in the O2 concentration and the current density in the cathode compartment are also shown in the model simulation results. Cell performance curves predicted by the present model correspond well with those obtained from experimental measurements, showing the applicability of this model in a PBI-based PEMFC.  相似文献   

11.
The present study discusses a detailed investigation on the implications of non-uniform porosity distribution in the gas diffusion layer (GDL) on the performance of proton exchange membrane fuel cell (PEMFC). A three-dimensional, single-phase, isothermal model of high-temperature PEMFC is employed to study the effect of non-uniform porosity distribution in GDL. The different porosity configurations with stepwise, sinusoidal, and logarithmic variation in porosity along the streamwise direction of GDL are considered. The numerical experiments are performed, keeping average porosity as constant in the GDL. The electrochemical characteristics such as the oxygen molar concentration, power density, current density, total power dissipation density, average diffusion coefficient, vorticity magnitude, and overpotential are studied for a range of porosity distributions. Furthermore, the variations of oxygen concentration, average diffusion coefficient, and vorticity magnitude are also discussed to showcase the influence of non-uniform porosity distribution. Our study reveals that the PEM fuel cell performance is the best when the porosity of the GDL decreases logarithmically in the streamwise direction. On the contrary, the performance deteriorates when the GDL porosity decreases sinusoidally. Also, it has been observed that the effects of non-uniform porosity distribution are more pronounced, especially at higher current densities. The outcomes of present investigation have potential utility in GDL fabrication and membrane assembly's sintering process for manufacturing high valued PEMFC products.  相似文献   

12.
A two-dimensional, steady state model for proton exchange membrane fuel cell (PEMFC) is presented. The model is used to describe the effect operation conditions (current density, pressure and water content) on the water transport, ohmic resistance and water distribution in the membrane and performance of PEMFC. This model considers the transport of species and water along the porous media: gas diffusion layers (GDL) anode and cathode, and the membrane of PEMFC fuel cell.  相似文献   

13.
The construction of a reliable numerical model and the clarification of its operational conditions are necessary for maximizing fuel cell operation. Numerous operating factors, such as mole fractions of species, pressure distribution, overpotential, and inlet relative humidity, affect the performance of proton exchange membrane fuel cells (PEMFCs). Among these operational parameters, geometrical shape and relative humidity are investigated in this paper. Specifically, the land ratio of the gas channel and rib is an important parameter affecting PEMFC performance because current density distribution is influenced by this geometrical characteristic. Three main variables determine the current density distribution, namely, species concentration, pressure, and overpotential distributions. These distributions are considered simultaneously in assessing fuel cell performance with a given PEMFC cell‐operating voltage. In this paper, three different land ratio models are considered to obtain better PEMFC performance. Similarly, three different inlet relative humidity variations are studied to achieve an enhanced operating condition. A three‐dimensional numerical PEMFC model is developed to illustrate the current density distribution as the determining factor for PEMFC performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this work we present a 3D computational model of a proton exchange membrane fuel cell (PEMFC) to investigate the effect of employing different modes of gas feeding on distributions. The model is based on a commercial fuel cell with serpentine flow-field. From a rigorous analysis of species concentration, current density and ionic conductivity distributions a correct form of feeding gases in the fuel cell is determined. Optimal operating conditions are found for a better utilization of fuel. Simulation results reveal that local current distribution on catalyst layer can be improved by feeding gases in similar mode and changing the channel height. However, polarization curves present an opposite response to this result. The polarization curve obtained in simulation is well correlated with experimental data.  相似文献   

15.
The high power density and rapid adjustment to power demands make proton exchange membrane fuel cells (PEMFCs) one of the best candidates for a clean alternative energy sources for the 21st century. Analytical and experimental works have been presented in this paper to investigate a single PEMFC. These include a study of PEMFC performance, the effects of operating temperature and pressure on performance, and flow characteristics within the cell. Experimental data show the positive effects of temperature and pressure on performance, which is also analyzed by the two-phase multicomponent flow model validated by test data. The predicted performance curves agree reasonably with the experimental data and demonstrate the increase in cell performance at elevated temperature. In addition, the simulation model proposed in this paper can also reasonably capture the flow characteristics in a PEMFC.  相似文献   

16.
刘阳  陈奔 《太阳能学报》2023,44(2):260-268
建立基于尾氢再循环的车用PEMFC氢气系统的集总参数模型和质子交换膜燃料电池堆的二维CFD模型,瞬态模拟研究额定功率工况下尾氢排放对系统及电堆工作特性的影响。结果表明:排放过程中,阳极进气压力和进气流量等参数出现显著的波动现象,且波动幅度和波动时间与排放持续时间存在直接关系;电堆性能在排放过程中有所下降,排放结束后能迅速恢复到排放前的水平;阳极内部的水气分布在排放过程中得到明显改善。  相似文献   

17.
Experiments and simulations are presented in this paper to investigate the effects of flow channel patterns on the performance of proton exchange membrane fuel cell (PEMFC). The experiments are conducted in the Fuel Cell Center of Yuan Ze University and the simulations are performed by way of a three‐dimensional full‐cell computational fluid dynamics model. The flow channel patterns adopted in this study include the parallel and serpentine flow channels with the single path of uniform depth and four paths of step‐wise depth, respectively. Experimental measurements show that the performance (i.e. cell voltage) of PEMFC with the serpentine flow channel is superior to that with the parallel flow channel, which is precisely captured by the present simulation model. For the parallel flow channel, different depth patterns of flow channel have a strong influence on the PEMFC performance. However, this effect is insignificant for the serpentine flow channel. In addition, the calculated results obtained by the present model show satisfactory agreement with the experimental data for the PEMFC performance under different flow channel patterns. These validations reveal that this simulation model can supplement the useful and localized information for the PEMFC with confidence, which cannot be obtained from the experimental data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Water management is a crucial factor in determining the performance of proton exchange membrane fuel cell (PEMFC) for automotive application. The shell-and-tube water-to-gas membrane humidifier is useful for humidifying the PEMFC due to its good performance. Shell-and-tube water-to-gas membrane humidifiers have liquid water on one side of the tube wall and a dry gas on the other. In order to investigate humidifier performance, a two-dimensional dynamic model of a shell-and-tube water-to-gas membrane humidifier is developed. The model is discretized into three control volumes – shell, tube and membrane – in the cross-sectional direction to resolve the temperature and species concentration of the humidifier. For validation, the dew point temperature of the simulation result is compared with that of experimental data and shows good agreement with only a slight difference. The distribution of humidification characteristics can be captured using the discretization along the air-flow direction. The humidification performance of two different flow configurations, counter and parallel, are compared under various operating conditions and geometric parameters. Finally, the dynamic response of the humidifier at the step-change of various air flow rates is investigated. These results suggest that the model can be used to optimize the inlet flow humidity of a PEMFC.  相似文献   

19.
A complete three-dimensional and single phase CFD model for a different geometry of proton exchange membrane (PEM) fuel cell is used to investigate the effect of using different connections between bipolar plate and gas diffusion layer on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components.This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the three-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that by increasing the number of connection between GDL and bipolar plate the performance of the fuel cell enhances.  相似文献   

20.
A new approach to numerical simulation of liquid water distribution in channels and porous media including gas diffusion layers (GDLs), catalyst layers, and the membrane of a proton exchange membrane fuel cell (PEMFC) was introduced in this study. The three-dimensional, PEMFC model with detailed thermo-electrochemistry, multi-species, and two-phase interactions. Explicit gas-liquid interface tracking was performed by using Computational Fluid Dynamics (CFD) software package FLUENT® v6.2, with its User-Defined Functions (UDF) combined with volume-of-fluid (VOF) algorithm. The liquid water transport on a PEMFC with interdigitated design was investigated. The behavior of liquid water was understood by presenting the motion of liquid water droplet in the channels and the porous media at different time instants. The numerical results show that removal of liquid water strongly depends on the magnitude of the flow field. Due to the blockage of liquid water, the gas flow is unevenly distributed, the high pressure regions takes place at the locations where water liquid appears. In addition, mass transport of the species and the current density distribution is significantly degraded by the presence of liquid water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号