首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-temperature equilibrium electrical conductivity of Ce-doped BaTiO3 was studied in terms of oxygen partial pressure, P (O2), and composition. In (Ba1−xCe x )TiO3, the conductivity follows the −1/4 power dependence of P (O2) at high oxygen activities, which supports the view that metal vacancies are created for the compensation of Ce donors, and is nearly independent of P (O2) where electron compensation prevails at low P (O2). When Ce is substituted for the normal Ti sites, there is no significant change in conductivity behavior compared with undoped BaTiO3, indicating the substitution of Ce as Ce4+ for Ti4+ in Ba(Ti1−yCe y )O3. The Curie temperature ( T c) was systematically lowered when Ce3+ was incorporated into Ba2+ sites, whereas the substitution of Ce4+ for Ti4+ sites resulted in no change in this parameter.  相似文献   

2.
A promising technique for the fabrication of mullite ceramics and mullite-matrix composites with low dimensional changes ("near-net-shape processing") is reaction bonding using Si metal and α-Al2O3 as starting materials, because sintering-induced shrinkage is compensated by Si-oxidation-induced volume expansion. A mullite reaction bonding (RBM) route which proceeds at much lower temperatures (lessthan equal to1350°C) than in conventional RBM systems (greaterthan equal to1500°C) is based on Ce doping which provides accelerated Si oxidation and mullite formation due to the formation of transient, low-viscosity Ce-Al-Si-O liquids. The present study shows that the required Ce-Al-Si-O liquids form in a reducing environment with Ce occurring as Ce3+. In an oxidizing environment, Ce is present as Ce4+, giving rise to precipitation of crystalline CeO2. Ce3+ left and right arrow Ce4+ redox reactions in the temperature range under consideration appear to be controlled by the presence of nonoxidized Si in the samples. According to the present investigation the amount of CeO2 added to the starting powders must be tailored carefully: Exaggerated CeO2 content produces large amounts of low-viscosity Ce-Al-Si-O liquids which may have the disadvantage of excessive sealing of the open porosity. This slows the oxygen diffusion velocity into the specimen considerably, with the consequence that nonoxidized Si and a residual Ce-Al-Si-O glass coexist in the ceramics after processing. A solution to this problem is to simultaneously enhance mullite crystal growth through seeding which works against excessive liquid-phase-induced shrinkage of the samples. This in turn enables complete oxidation and recrystallization of all liquid phases.  相似文献   

3.
The phase separation in 12 mol% CeO2─ZrO2 ceramic heattreated in a mixture of H2 and Ar was investigated by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, and Raman scattering. After heat treatment at temperatures above 1200°C, the tetragonal solid-solution phase separated into Zr2Ce2O7 and the monoclinic phase. Raman scattering measurements also provided supplementary evidence for the phase separation. XPS showed that the valence change from Ce4+ to Ce3+ predominantly occurred, whereas the reduction from Zr4+ to Zr3+ took place above 1200°C. It is concluded, that in the highly reduced sample, where the valence changes from Ce4+ (Zr4+) to Ce3+ (Zr3+), the phase separation is noticeably promoted. Below 1000°C the phase separation was suppressed because of no appreciable valence change to trigger the phase separation, and the single tetragonal phase was retained.  相似文献   

4.
Valence state and site symmetry of Ti ions in TiO2–Y2O3–ZrO2 powders with 2 mol% Y2O3 and 5, 10, 15, and 20 mol% TiO2, respectively, are studied by X-ray absorption near-edge spectroscopy (XANES). Tetravalent Zr4+ ions are replaced predominantly by Ti4+ ions. Within the solubility region of Ti ions, a subsequent displacement of Ti ions from the center of symmetry is observed with increasing TiO2 content in TiO2–Y2O3-stabilized tetragonal ZrO2 polycrystals (Ti-Y-TZP) under investigation. This behavior cannot be interpreted with a random substitution of Ti4+ ions on Zr4+ lattice sites. On the contrary, this correlation between the TiO2 content in Ti-Y-TZP and the shift of Ti ions indicates an increasing interaction between the Ti ions with growing TiO2 content, caused by a subsequent clustering of Ti ions.  相似文献   

5.
The effects of the dopants, Mg2+, Sr2+, Sc3+, Yb3+, Gd3+, La3+, Ti4+, Zr4+, Ce4+, and Nb5+, on the grain boundary mobility of dense Y2O3 have been investigated from 1500° to 1650°C. Parabolic grain growth has been observed in all cases over a grain size from 0.31 to 12.5 μm. Together with atmospheric effects, the results suggest that interstitial transport is the rate-limiting step for diffusive processes in Y2O3, which is also the case in CeO2. The effect of solute drag cannot be ascertained but the anomalous effect of undersized dopants (Ti and Nb) on diffusion enhancement, previously reported in CeO2, is again confirmed. Indications of very large binding energies between aliovalent dopants and oxygen defects are also observed. Overall, the most effective grain growth inhibitor is Zr4+, while the most potent grain growth promoter is Sr2+, both at 1.0% concentration.  相似文献   

6.
Crystallization sequences of glasses with compositions in the tridymite primary phase field of the MgO-Al2O3-SiO2 system were studied by DTA, X-ray diffraction, and other techniques. Crystallization was catalyzed by the addition of 7 wt% of either ZrO2 or TiO2. Up to 10 wt% CeO2 was also added to some glasses. Metastable solid solutions with the high-quartz structure exhibiting varying lattice parameters commonly occurred at low temperatures, transforming into a high cordierite at higher temperatures. Depending on the composition and heat treatment, other phases also appeared, e.g. Ce2Ti2O4 (Si2O7). The rate of crystallization was markedly dependent on the catalyst. Colloidal precipitation of the catalyst accompanied by bulk crystallization of the glass was observed with ZrO2, but no crystalline TiO2 was detected. In the presence of CeO2, TiO2 was a more effective catalyst than ZrO2. Although CeO2 lowered the melting temperatures of the glass-ceramics, it increased the stability of the glasses and inhibited volume nucleation, causing coarse structures to form on crystallization.  相似文献   

7.
Amorphous films in the system AlPO4–TiO2 were prepared by an rf-sputtering method, and their physical properties, such as density, refractive index, and thermal expansion coefficient, and the infrared absorption spectra were measured. The thermal expansion coefficient increased linearly with increasing TiO2 content. The results of the molar refractivity and the infrared absorption spectra indicated that the coordination number of titanium ions in these films is higher than that in SiO2–TiO2 glasses with a negative thermal expansion, in which Ti4+ ions are tetrahedrally coordinated. In order to confirm the coordination state of the titanium ions in these amorphous films, titanium K -band emission spectra were obtained by X-ray emission spectroscopy, revealing sixfold coordination. The higher coordination state of Ti4+ was considered to account for these amorphous films not exhibiting negative thermal expansion, as in the SiO2–TiO2 system.  相似文献   

8.
A (Ce0.67Tb0.33)Mn x Mg1− x Al11O19 phosphor powder was synthesized, using a simple sol–gel process, by mixing citric acid with CeO2, Tb4O7, Al(NO3)3·9H2O, Mg(OH)2·4MgCO3·6H2O, and Mn(CH3COO)2. The phosphor crystallized completely at 1200°C, and the phosphor particle size was between 1 and 5 μm. The excitation spectrum was characteristic of Ce3+, while the emission spectrum was composed of lines from Tb3+ and Mn2+. The Mn2+ gave a green fluorescence band, and concentration quenching occurred when x > 0.10. The luminescent properties of the phosphor were explained by a configurational coordinate model.  相似文献   

9.
The control of the microstructure of Ce-doped Al2O3/ZrO2 componsites by the valence change of cerium ion has been demonstrated. Two distinctively different types of microstructure, large Al2O3 grains with intragranular ZrO2 particles and small Al2O3 grains with intergranular ZrO2 particles, can be obtained under identical presintering processing conditions. At doping levels greater than ∼ 3 mol% with respect to ZrO2, Ce3+ raises the alumina grain-boundary to zirconia particle mobility ratio. This causes the breakaway of grain boundary from particles and the first type of microstructure. On the other hand, Ce4+ causes no breakaway and produces a normal intergranular ZrO2 distribution. The dramatic effect of Ce3+ on the relative mobility ratio is found to be associated with fluxing of the glassy boundary phase and is likewise observed for other large trivalent cation dopants. The ZrO2 second phase acts as a scavenger for these trivalent cations, provided their solubility limit in ZrO2 is not exceeded.  相似文献   

10.
Crystalline TiO2 powders were prepared by the homogeneous precipitation method simply by heating and stirring an aqueous TiOCl2 solution with a Ti4+ concentration of 0.5 M at room temperature to 100°C under a pressure of 1 atm. TiO2 precipitates with pure rutile phase having spherical shapes 200-400 nm in diameter formed between room temperature and 65°C, whereas TiO2 precipitates with anatase phase started to form at temperatures >65°C. Precipitates with pure anatase phase having irregular shapes 2-5 µm in size formed at 100°C. Possibly because of the crystallization of an unstable intermediate product, TiO(OH)2, to TiO2 x H2O during precipitation, crystalline and ultrafine TiO2 precipitates were formed in aqueous TiOCl2 solution without hydrolyzing directly to Ti(OH)4. Also, formation of a stable TiO2 rutile phase between room temperature and 65°C was likely to occur slowly under these conditions, although TiO2 with rutile phase formed thermodynamically at higher temperatures.  相似文献   

11.
La-doped TiO2− x F x (La–TiO2− x F x ) powders were prepared by the sol–gel method. X-ray diffraction results showed that La efficiently inhibited grain growth. X-ray photoelectron spectroscopy spectra revealed that La2O3 and O–Ti–F bonds have formed, the La2O3 maintained the high surface area of TiO2− x F x after calcination at a temperature above 500°C, while the O–Ti–F bonds increased the oxidation potential of the photogenerated hole in the valence band. The UV-vis spectroscopy of the La–TiO2− x F x showed that the presence of intraband gap states was likely responsible for its absorption of visible light. When the molar ratios of La and F to Ti were 1.5:100 and 5:100, respectively, and calcined at 500°C, the photocatalytic degradation rate of methylene blue over La–TiO2− x F x was about 1.5 times higher than that of F-doping TiO2.  相似文献   

12.
Scanning electron microscopy and electron probe micro-analysis were used to investigate the microstructure of both slow-cooled and quenched polycrystalline BaTiO3 specimens with a small excess of TiO2 (Ba/Ti=0.995 to 0.999) or of BaO (Ba/Ti=1.002 and 1.005). The electron micrographs of polished and etched TiO2-excess BaTiOs samples, and of fracture surfaces of quenched samples, showed a second phase in the grain boundaries and triple-point regions, whereas no second phase was observed in samples having Ba/Ti=1.000. Microprobe analysis of the second phase gave compositions near that of the reported adjacent phase of higher TiO2 content, Ba6Ti17O40. The results indicate that the solubility of TiO2 in BaTiO3 is <0.1 mol%.  相似文献   

13.
An extensive X-ray study of CeO2–Nd2O3 solid solutions was performed, and the densities of solid solutions containing various concentrations of NdO1.5 were measured using several techniques. Solid solutions containing 0–80 mol% NdO1.5 were synthesized by coprecipitation from Ce(NO3)3 and Nd(NO3)3 aqueous solutions, and the coprecipitated samples were sintered at 1400°C. A fluorite structure was observed for CeO2–NdO1.5 solid solutions with 0–40 mol% NdO1.5, which changed to a rare earth C-type structure at 45–75 mol% NdO1.5. The change in the lattice parameters of CeO2–NdO1.5 solid solutions, when plotted with respect to the NdO1.5 concentration, showed that the lattice parameters followed Vegard's law in both the fluorite and rare earth C-type regions. The maximum solubility limit for NdO1.5 in CeO2 solid solution was approximately 75 mol%. The relationship between the density and the Nd concentration indicated that the defect structure followed the anion vacancy model over the entire range (0–70 mol% NdO1.5) of solid solution.  相似文献   

14.
The influence of supports on the preparation of TiO2 nanoparticles by the adsorption phase technique is studied in detailed. Series temperature experiments of two types of supports (named as SiO2 A and B) were used. Energy-dispersive analysis by X-ray indicates that the concentration of TiO2 on both supports decreases with temperature increasing. TiO2 quantity on SiO2 A decreases sharply between 40° and 60°C, whereas the temperature range for SiO2 B is between 30° and 50°C. X-ray diffraction (XRD) shows that grain size of TiO2 particles on two SiO2 surfaces is all below 7 nm. It is also shown by XRD that particles on SiO2 A decrease sharply as in the quantity curve of TiO2, but particles on SiO2 B all change gradually and TiO2 particles on SiO2 B are more uniform in transmission electron spectroscopy. The similarly of both supports is considered to be the reason for the similar changes in Ti concentration, and the different characteristics of the internal/external surface lead to variant quantity and grain size, as well as characteristics of TiO2.  相似文献   

15.
Lead lanthanum zirconate titanate (Pb1− x La x (Zr y ,Ti z )O3, PLZT) films containing [00 l ] preferentially oriented grains were produced successfully on YBa2Cu3O7− x -coated (YBCOcoated) SrTiO3 (STO) or YBCO/CeO2-coated silicon substrates; films containing randomly oriented grains were created on platinum-coated silicon substrates. The latter possessed significantly inferior ferroelectric properties, a fact ascribed to the presence of a paraelectric phase (TiO2) at the PLZT/platinum interface. On the other hand, the PLZT/YBCO/STO films exhibited better electrical properties than did the PLZT/YBCO/CeO2/Si films, and this phenomenon was attributed to better alignment of the grains in normal and in-plane orientations. In terms of fatigue properties, the [00l] textured films that were deposited on YBCO/CeO2/Si substrates possessed substantially superior polarization-switching-cycle endurance versus the randomly oriented films grown on Pt(Ti)/Si substrates. Moreover, the tetragonal films behaved much more satisfactorily than did the rhombohedral PLZT films. The ferroelectric parameters of tetragonal PLZT films showed no significant degradation up to 109 polarization switching cycles, whereas the remnant polarization and coercive force of the rhombohedral PLZT films had already degraded to 80% of their initial values after 108 cycles.  相似文献   

16.
Irradiation of Ti[N(CH3)2]4 by the 1.064-μm line of a pulsed Nd: YAG laser in the presence of TiO2, Al2O3, or Si3N4 particles has been found to form amorphous deposits on the oxide particles. The resulting materials can be processed into TiN/TiO2, TiN/Al2O3, or TiN/Si3N4 composites with the TiN component on the surface of the particles. The powders have been characterized by Raman spectroscopy and X-ray powder diffraction studies. The surface analysis of the composites by X-ray photoelectron spectroscopy and high-resolution electron microscopy is presented.  相似文献   

17.
Phase relations within the "V2O3–FeO" and V2O3–TiO2 oxide systems were determined using the quench technique. Experimental conditions were as follows: partial oxygen pressures of 3.02 × 10−10, 2.99 × 10−9, and 2.31 × 10−8 atm at 1400°, 1500°, and 1600°C, respectively. Analysis techniques that were used to determine the phase relations within the reacted samples included X-ray diffractometry, electron probe microanalysis (energy-dispersive spectroscopy and wavelength-dispersive spectroscopy), and optical microscopy. The solid-solution phases M2O3, M3O5, and higher Magneli phases (M n O2 n −1, where M = V, Ti) were identified in the V2O3–TiO2 system. In the "V2O3–FeO" system, the solid-solution phases M2O3 and M3O4 (where M = V, Ti), as well as liquid, were identified.  相似文献   

18.
The reoxidation process in highly Ce3+-doped BaTiO3 ceramics was studied using TEM. Samples of two different types of solid solutions, Ba1−XCe3+ X Ti1−X/4( V Ti) X/4 O3 and Ba1−XCe3+ X Ti4+1− X Ti3+ X O3, were prepared by sintering oxide mixtures in air and in a reducing atmosphere, respectively. The solid solutions were reoxidized by annealing in air at high temperatures (1000°—1100°C). As a result of internal oxidation of Ce3+ and Ti3+, fluorite CeO2 and monoclinic Ba6Ti17O40 phases were precipitated in the perovskite matrix. In Ba1−XCe3+ X Ti1−X/4( V Ti)X/4O3 solid solution precipitates nucleate heterogeneously at grain boundaries and at extended defects inside the grains, whereas in Ba1−XCe3+XTi4+1−XTi3+XO3 solid solution precipitates are nucleated mainly homogeneously inside reoxidized perovskite grains. The form of the precipitates and their orientational relationship with the matrix, as well as the mechanism of internal oxidation, are discussed.  相似文献   

19.
This paper definitely reveals that LaPO4:Ce3+, Tb3+ (LAP) nanophosphors prepared by normal hydrothermal method suffer significant loss of luminescence due to the oxidation of Ce3+–Ce4+ at hydrothermal stage. To effectively protect Ce3+ from oxidation, a reductive hydrothermal process using hydrazine hydrate as a protecting agent is proposed to synthesize LAP nanophosphors with different Ce3+ and Tb3+ concentrations, which exhibited much stronger green photoluminescence (PL) and longer lifetime than the products prepared by normal hydrothermal method. Furthermore, the high-brightness LAP nanophosphors exhibited high-quenching concentration of Tb3+; the La0.4Ce0.4Tb0.2PO4 nanophosphor showed almost the same PL intensity as that of the commercially used La0.7Ce0.2Tb0.1PO4 bulk powder.  相似文献   

20.
The system HfO2-TiO2 was studied in the 0 to 50 mol% TiO2 region using X-ray diffraction and thermal analysis. The monoclinic ( M ) ⇌ tetragonal ( T ) phase transition of HfO2 was found at 1750°± 20°C. The definite compound HfTiO4 melts incongruently at 1980°± 10°C, 53 mol% TiO2. A metatectic at 2300°± 20°C, 35 mol% TiO2 was observed. The eutectoid decomposition of HfO2,ss) ( T ) → HfO2,ss ( M ) + HfTiO34,ssss occurred at 1570°± 20°C and 22.5 mol% TiO2. The maximum solubility of TiO2 in HfO2,ss,( M ) is 10 mol% at 1570°± 20°C and in HfO2,ss ( T ) is 30 mol% at 1980°± 10°C. On the HfO2-rich side and in the 10 to 30 mol% TiO2 range a second monoclinic phase M of HfO2( M ) type was observed for samples cooled after a melting or an annealing above 1600°C. The phase relations of the complete phase diagram are given, using the data of Schevchenko et al. for the 50% to 100% TiO2 region, which are based on thermal analysis techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号