首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为提高多面体模型的加工效率,提出了一种用于多面体加工的圆弧刀轨生成算法。采用截平面和多面体模型的等距模型求交来计算初始直线刀轨;由等距模型的顶点曲率估算刀位点处沿刀轨方向和刀轨间隔方向的曲率半径,并根据残留高度确定刀轨行距。提出了基于刀位点曲率半径调节的圆弧拟合算法,算法引入拟合约束条件和曲率半径调节系数;在拟合精度范围内,迭代确定曲率半径调节系数,从而确定拟合圆弧。实验结果表明文中方法生成的刀轨保持G1连续且包含的圆弧段数量较少,有利于提高加工效率。  相似文献   

2.
针对环形刀五轴加工自由曲面的残留误差问题,在传统等残留高度算法的基础上,提出了一种基于定向距离理论的等最大残留高度刀具轨迹规划算法。首先根据微分几何理论计算已知刀触点的初始侧向行距,并在侧向行距方向进行偏置得到相邻刀触点;然后以基于定向距离理论的残高误差计算模型对相邻刀触点间的实际残高值进行计算;最后通过迭代计算规划出等最大残留高度的相邻刀具轨迹。如此循环,从而获得整个曲面的刀具轨迹。实验结果表明,相对于商用软件MasterCAM9.0,该算法在充分保证曲面加工质量的同时最大限度地减小了刀具轨迹的总长度,从而提高了加工效率。  相似文献   

3.
复杂曲面五坐标数控加工刀具轨迹的规划算法   总被引:16,自引:6,他引:16  
提出了复杂曲面五坐标数控加工刀具轨迹的规划算法。该算法在保证刀具不与被加工曲面发生干涉的基础上 ,使得刀具扫描面与被加工曲面在刀触点处切平面上每个方向的曲率相匹配 ,由此规划的等残留高度刀具轨迹能改善曲面加工精度和加工效率  相似文献   

4.
考虑数控渐进成形中层间距对成形质量的影响,提出了一种基于等残余高度的、并对成形角不同曲面区域生成不等层间距的等高线轨迹生成方法。首先生成等残余高度的等高线轨迹,然后在大成形角、大层间距区域中插入等高线来优化层间距。最终生成能满足等残余高度要求、并能通过减小成形力来减小反弹变形的轨迹。数值模拟分析与试验结果表明,该方法生成的不等层间距成形轨迹与等残余高度轨迹相比,成形件所受的等效应变均匀性好,成形件轮廓精度高,能够获得较好的工艺质量。  相似文献   

5.
为提高自由曲面数控加工的切削效率,改善刀具的受力状态,提出了一种自由曲面三坐标加工等间距刀具路径规划方法.分析了在实际加工过程中可采用的几种刀具路径规划方法及其实现等距加工的约束条件.研究了等间距刀具路径的计算方法,并针对计算过程中出现的逼近误差校验和刀具路径延伸与裁剪问题给出了解决方法.对等参数线法和等距截面法进行了比较,表明应用该方法规划自由曲面刀具路径,可提高走刀路径对曲面形状变化的适应性和切削行间距分布的均匀性.  相似文献   

6.
Resistance to wear, and therefore the lifetime of forming tools, can be increased by surface functionalisation using novel, multifunctional coatings. Thereby, the tribological requirements on the coating are an essential factor. Within the scope of the research work presented here, tribological examinations were carried out on a metastable vanadium aluminium nitride (VAlN) tool coating when drawing the high-strength sheet metal material DP 800. It was shown that the wear of the VAlN tool coating can already be determined at stable frictional behaviour (μ?<?0.085). The wear analysis was carried out considering the topography and change in hardness of the tool surface during the drawing path of 110,000?mm under a contact stress of 150?MPa.  相似文献   

7.
In this paper, we present a cutter location (CL) surface deformation approach for constant scallop height tool path generation from triangular mesh. The triangular mesh model of the stereo lithography (STL) format is offset to the CL surface and then deformed in accordance with the deformation vectors, which are computed by the slope and the curvature of the CL surface. In addition, the tool path, which is computed by slicing the deformed CL surface, is inversely deformed by those same deformation vectors to a tool path with a constant scallop height. The proposed method is implemented, and a tool path is generated and tested by simulation and by numerical control (NC) machining. The scallop height was found to be constant over the entire machined surface, demonstrating much better quality than that of mesh slicing, under the same constraints for machining time.  相似文献   

8.
Sheet metal dieless forming is a new metal forming technology. This technology adopts theprinciple of rapid prototyping technology, so it can form sheet metal parts without traditional die andmoulds. According to the charateristic of sheet metal dieless forming technology a new way of toolpath generation based on the STL file for sheet metal dieless forming is proposed.  相似文献   

9.
Four tool path strategies such as equal-interval tool paths, parallel tool paths, parallel–tangency tool paths, and freeform tool paths are proposed in computer numerical control milling of a complex freeform surface. The objective is to understand how 3D tool paths influence their machining efficiency, surface quality, and form accuracy. In this study, their scallop heights were less than or equal to 15 μm. First, their scallop heights distributions and 3D tool path distances were theoretically analyzed; then, four tool path strategies were investigated with reference to machining efficiency, surface texture height, surface roughness, and form errors. It is shown that scallop heights distribution can be used to display the surface texture state and predict tool path distance. Experimental results indicate that the surface texture height, the surface roughness, and the form errors were nearly identical on the machined flat location and surface for various tool path strategies, whereas their surface quality and form accuracy are easily destroyed on the abrupt ones except for the parallel tool paths. Although the freeform tool paths produce the shortest tool path distance through 3-axes driving mode, the parallel tool paths offer the best surface quality and form accuracy through 2-axes driving mode. This is because the 3-axes driving and its vector changes on abrupt location easily lead to large machine vibration and movement errors. It is confirmed that the parallel tool path strategy with 2-axes driving mode can improve the surface quality and form accuracy in actual milling of a complex freeform surface.  相似文献   

10.
为了降低复杂曲面类零部件加工的刀具路径,减小刀具路径条数,提高加工效率,提出了一种新的复杂曲面环形刀五轴端铣加工刀具轨迹优化方法。在局部可铣性基础上对刀轴矢量角进行自适应优化,采用新型加工带宽计算方法——等残留高度算法,给出了等残留高度算法的刀具轨迹生成具体步骤。仿真结果表明:与传统等残留高速算法相比,刀具轨迹优化算法的刀具路径更短、条数更少,能够有效提高复杂曲面加工效率。  相似文献   

11.
There exists some error between the manufactured part shape and the designed target shape due to springback of this part after forming. To reduce the error, an iterative algorithm of closed-loop control for correcting tool path of the single-point incremental forming, based on Fast Fourier and wavelet transforms, has been developed. Moreover, the data of the springback shapes, after unloading, of the sheet metal parts formed with the trial and corrected tool paths, used for iterative correction of tool path in the algorithm, are obtained with finite element model (FEM) simulation. Then, a truncated pyramid-shaped workpiece, whose average errors are +0.183/?0.175 mm, was made with the corrected tool path after three iterations solved by the above algorithm and simulation data. The results show that the tool path correction algorithm with Fourier and wavelet transforms is reasonable and the means with FEM simulation are effective. It can be taken as a new approach for single-point incremental forming of sheet metal and tool path design.  相似文献   

12.
In order to generate efficient tool path with given precision requirements, scallop height should be kept under a given limit, while the tool path should be as short as possible to reduce machining time. Traditional methods generate CC curves one by one, which makes the final tool path far from being globally optimal. This paper presents an optimal tool path generation model for a ball-end tool which strives to globally optimize a tool path with various objectives and constraints. Two scalar functions are constructed over the part surface to represent the path intervals and the feedrate (with directions). Using the finite element method (FEM), the tool path length minimization model and the machining time minimization model are solved numerically. The proposed method is also suitable for tool path generation on mesh surfaces. Simulation results show that the generated tool path can be direction parallel or contour parallel with different boundary conditions. Compared to most of the conventional tool path generation methods, the proposed method is able to generate more effective tool paths due to the global optimization strategy.  相似文献   

13.
复杂钣金零件渐进成形方法   总被引:6,自引:0,他引:6  
崔震  高霖  陆启建 《机械工程学报》2007,43(12):235-239
以复杂钣金零件-人面部模型零件为例,论述基于UG软件的建模及建模过程中应注意的问题、支撑模型的制作及其加工代码的生成、适用于渐进成形正成形过程的加工代码生成处理过程,给出加工代码的详细信息,成功加工出质量较高的人面部模型。人面部模型渐进成形试验结果表明,利用渐进成形正成形方法可以成形出形状复杂的钣金零件,生产小批量复杂零件可以节省时间与费用;UG生成的三轴数控加工代码需要通过处理才能应用于渐进成形正成形过程;复杂钣金件渐进成形过程中定位精度非常重要,定位精度高的零件厚度分布符合 的规律,并可以成功成形出设计的零件,定位精度误差较大时零件厚度分布不均匀,成形工具头与板 料的过度挤压侧板料厚度变薄急剧从而引起零件的过早破裂。  相似文献   

14.
The increasing complexity of surface has put forward higher demands for CNC machining trajectory generation. The constant scallop height method has the disadvantage of point redundancy during trajectory discretization. Therefore, a non-redundant tool trajectory generation method for surface finish machining is put forward. The cutting row spacing is determined by the geodesic curvature according to scallop height and the convexity or concavity of the local surfaces. The adjacent cutter contact (CC) points with constant scallop height are expressed point by point from the present CC point. The redundant points are removed by maximizing each cutting step length through making the chord error equal to the machining allowable error. The dual NURBS ruled surface is constructed to realize smooth transition of the tool trajectories and tool axis vector. The prototype system taking ACIS R13 and HOOPS V11.0 as modeling kernel has been developed to verify the proposed method. The experiment results proved that the proposed method can realize non-redundant tool trajectory considering tool interference during surface finish machining.  相似文献   

15.
This paper presents a new method of computing constant scallop height tool paths in 5-axis milling on sculptured surfaces. Usually, iso-scallop tool path computation methods are based on approximations. The attempted scallop height is modelled in a given plane to ensure a fast computation of the tool path. We propose a different approach, based on the concept of the machining surface, which ensures a more accurate computation. The machining surface defines the tool path as a surface, which applies in 3- or 5-axis milling with the cutting tools usually used. The machining surface defines a bi-parametric modelling of the locus of a particular point of the tool, and the iso-scallop surface allows to easily find iso-scallop tool centre locations. An implementation of the algorithms is done on a free-form surface with a filleted end mill in 5-axis milling.  相似文献   

16.
This paper presents a model for the prediction of surface topography considering tool wear during the milling process. First, the cutting edge path equation, which can be transformed into equivalent polynomial equations and solved for discrete positions along the feed direction, is established including the effect of tool wear. Then, cutting edge is divided into a series of cutting points and an algorithm is proposed to determine the range of divided position angle. Finally, surface topography model is established based on the established cutting path equation, the range of position angle, the calculated cutting time, and spiral lag angle. By using this model, surface topography generation is simplified with respect to other models in literature and the modeling method of surface topography does not need to mesh the workpiece and the model can easily be extended to include other factors on surface generation. Based on the established surface topography model, an algorithm is proposed to simulate generation of surface profile in milling operation. Experimental work and validation of the established model is performed on a five-axis milling center by using stainless steel 1Cr18Ni9Ti and cemented carbides milling cutter. Cutting test results about the topography generation of the plane and cylindrical surface show good agreement with model predictions.  相似文献   

17.
This paper proposes an efficient algorithm to generate tool posture collision-free area for the whole free-form surface during five-axis CNC finishing period. The algorithm is consisted of two phases: sampling and interpolation. In the first phase, a few points are picked on the surface and the admissible area of tool posture is calculated at each point. The admissible area is a two-dimensional figure on the plane. Base on the assumption that the admissible area of adjacent surface points should transform continuously, so in the second phase, the admissible area of the sampling points are interpolated with cubic B-surface interpolation technique, forming an expression as ?(u, v), through which when the parameters u and v are assigned, the global collision-free area for the corresponding surface point can be easily calculated. The proposed algorithm is efficient because only a few surface points are needed to get the expression. The proposed algorithm is programmed and tested. Results show that the algorithm is relatively precise and efficient while considering the whole surface.  相似文献   

18.
Because the intermediate-stage forming surface and the intermediate-stage forming tool path of the complex shape model are difficult to generate, the existing multi-stage CNC incremental forming takes the regular rotary body model or the square model as the research objects, and all adopt the three-axis CNC incremental forming mode. In this paper, a method for generating the intermediate-stage surface by using a longitude line that can reflect the personality of the surface and the five-axis CNC multi-stage incremental forming tool path was proposed. Firstly, the vertexes of the triangular facets of the STL model are used to generate the longitude lines which can reflect the characteristic of the surface, then the longitude lines are offset according to the multi-stage forming strategy and the characteristics of each surface associated with the longitude lines so that the intermediate-stage longitude lines could be generated, and then the intermediate-stage surfaces are built using the intermediate-stage longitude lines. Finally, the cutter location points of each intermediate stage are obtained by cutting the intermediate-stage surfaces, and the postures of the five-axis CNC pressing tool are determined according to the normal vector of the cutter location points. The case studies show that the proposed method can well generate the five-axis CNC multi-stage incremental forming path for the complex shape sheet metal part. The results of the numerical simulation analysis and forming experiments show that the proposed method is applicable.  相似文献   

19.
Flexible rolling is a novel forming process for three-dimensional surface parts using a pair of bendable rolls. By controlling the distribution of the gap between the upper and lower forming rolls in the rolling process, the sheet metal is nonuniformly thinned in the thickness direction and the longitudinal elongation is different in the width direction of the sheet metal, which makes the sheet metal deform in rolling direction. With the rotation of the bendable rolls, the sheet metal is deformed consecutively and a three-dimensional surface part could be obtained. A small experimental device has been designed. Finite element analysis (FEA) model is established. Spherical surface and saddle surface are simulated, and their experimental results are presented. The major purpose of the present work is to analyze the forming precision of flexible rolling and the reasons for the shape errors through simulated and experimental results. The results demonstrate that the proposed process is a feasible and effective way of forming three-dimensional surface parts.  相似文献   

20.
基于特征的直纹面5轴侧铣精加工刀位计算方法   总被引:17,自引:1,他引:17  
提出了基于加工特征的直纹面5轴侧铣精加工刀位轨迹的计算方法,给出了误差估算方法。通过对直纹面微分几何特性的研究,用扭曲度来刻画直纹面特征,将直纹面划分为可展化曲面和非可展化曲面。对于可展化曲面,通过调整直纹面上母线方向的变化规律,使之成为可展曲面,以便在加工中获得无脊棱的光滑曲面;对于非可展化曲面,提出用最小偏置角原理来求取刀轴矢量,以使加工误差在刀具与被加工曲面切触状态下趋于最小,最终获得无干涉刀位轨迹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号