首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic properties and hyperthermia effect were studied in a magnetorheological fluid (MRF) containing iron particles of $1 \upmu \mathrm{m}\, \text{ to}\, 5 \,\upmu \mathrm{m}$ in diameter. The measurements showed that the magnetization in the saturation state reaches a value of 171 $\text{ A}\cdot \text{ m}^{2}\cdot \mathrm{kg}^{-1}$ with very small values of coercivity and remanence. They also showed the ferromagnetic behavior in the system together with a value of the magnetic susceptibility of 1.7. Theoretical and experimental results of the calorimetric effect investigation under a changeable magnetic field of high frequency ( $f = 504$ kHz) in an MRF will be presented in the article. The sample was subjected to an alternating magnetic field of different strengths ( $H = 0$ to 4 $\text{ kA}\cdot \text{ m}^{-1})$ . It results from a theoretical analysis that the heat power density (released in the MRF sample) referenced to the eddy current is proportional to the square of frequency, the magnetic field amplitude, and the iron grain diameter. Experimental results indicate that there are some reasons for the released heat energy such as: energy losses from magnetic hysteresis and eddy currents induced in the iron grains. If the magnetic field intensity amplitude grows, the participation of losses connected with magnetic hysteresis is increased. From the calorimetric measurements, the conclusion is as follows: for a magnetic field $H<1946\,\text{ A}\cdot \mathrm{m}^{-1}$ , the eddy current processes dominate in the heat generation mechanism, whereas hysteresis processes for the total release of thermal energy dominate for higher magnetic fields. Both mechanisms take equal parts in heating the tested sample at a magnetic field intensity amplitude $H= 1946\,\text{ A}\cdot \mathrm{m}^{-1}$ . The specific absorption rate referenced to the mass unit of the MRF sample at the amplitude of the magnetic field strength 4 $\text{ kA}\cdot \mathrm{m}^{-1}$ equals 24.94 $\text{ W} \cdot \mathrm{kg}^{-1}$ at a frequency $f$ = 504 kHz.  相似文献   

2.
Glass-transition kinetics of $\mathrm{Se}_{80}\mathrm{In}_{20-\mathrm{x}}\mathrm{Pb}_{\mathrm{x}}$ ( $x =$ 0, 5, 10, and 15) chalcogenide glasses have been carried out at different heating rates by using differential scanning calorimeter (DSC) under the non-isothermal condition. The glass-transition temperature $T_{\mathrm{g}}$ and peak glass-transition temperature $T_{\mathrm{pg}}$ have been determined from DSC thermograms. The reduced glass temperature $T_{\mathrm{rg}}$ , total relaxation time $\tau _{T_{g}}$ thermal-stability parameters $K^{l}$ and $S$ , the activation energy of glass transition $E_{\mathrm{g}}$ , the fragility index $F_{\mathrm{i}}$ , and the average coordination number $\langle Z\rangle $ have been calculated on the basis of the experimental results. The temperature differences $(T_{\mathrm{c}}-T_{\mathrm{g}}), K_{\mathrm{gl}}, K^{l}, S$ , and $E_{\mathrm{g}}$ are found to be maxima for $\mathrm{Se}_{80}\mathrm{In}_{10}\mathrm{Pb}_{10}$ glass. This indicates that $\mathrm{Se}_{80}\mathrm{In}_{10}\mathrm{Pb}_{10}$ glass has the highest thermal stability and glass-forming ability in the investigated compositional range. These results could be explained on the basis of modification of the chemical bond formation due to incorporation of Pb in the Se–In glassy matrix.  相似文献   

3.
This paper presents measurements of the thermal conductivity and the dynamic viscosity of $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol and $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol (1 % to 3 % particle volume fraction) nanofluids carried out in the temperature range from $0\,^{\circ }$ 0 ° C to $50\,^{\circ }$ 50 ° C. The thermal-conductivity measurements were performed by using a transient hot-disk TPS 2500S apparatus instrumented with a 7577 probe (2.001 mm in radius) having a maximum uncertainty $(k=2)$ ( k = 2 ) lower than 5.0 % of the reading. The dynamic-viscosity measurements and the rheological analysis were carried out by a rotating disk type rheometer Haake Mars II instrumented with a single-cone probe (60 mm in diameter and $1^{\circ }$ 1 ° ) having a maximum uncertainty $(k=2)$ ( k = 2 ) lower than 5.0 % of the reading. The thermal-conductivity measurements of the tested nanofluids show a great sensitivity to particle volume fraction and a lower sensitivity to temperature: $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol and $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol nanofluids show a thermal-conductivity enhancement (with respect to pure ethylene glycol) from 1 % to 19.5 % and from 9 % to 29 %, respectively. $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol and $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol nanofluids exhibit Newtonian behavior in all the investigated temperature and particle volume fraction ranges. The relative viscosity shows a great sensitivity to the particle volume fraction and weak or no sensitivity to temperature: $\mathrm{TiO}_{2}$ TiO 2 –ethylene glycol and $\mathrm{Al}_{2}\mathrm{O}_{3}$ Al 2 O 3 –ethylene glycol nanofluids show a dynamic viscosity increase with respect to ethylene glycol from (4 to 5) % to 30 % and from 14 % to 50 %, respectively. Present experimental measurements were compared both with available measurements carried out by different researchers and computational models for thermophysical properties of nanofluids.  相似文献   

4.
The present paper reports a comparative study of some thermophysical properties (thermal conductivity, thermal diffusivity, thermal effusivity, and specific heat per unit volume) for $\mathrm{{Se}}_{80}\mathrm{{Te}}_{20}$ Se 80 Te 20 and $\mathrm{{Se}}_{80}\mathrm{{Te}}_{10}\mathrm{{M}}_{10}$ Se 80 Te 10 M 10 (Cd, In, and Sb) alloys. The transient plane source technique is used for this purpose. The thermal conductivity is highest for $\mathrm{{Se}}_{80}\mathrm{{Te}}_{10}\mathrm{{In}}_{10}$ Se 80 Te 10 In 10 as compared to the other ternary alloys. This is explained in terms of the thermal conductivity of additive elements Cd, In, and Sb. The composition dependence of the thermal diffusivity and specific heat per unit volume is also discussed.  相似文献   

5.
Vascular targeted nanoparticles have been developed for the delivery of therapeutic and imaging agents in cancer and cardiovascular diseases. However, at authors’ knowledge, a comprehensive systematic analysis on their delivery efficiency is still missing. Here, a computational model is developed to predict the vessel wall accumulation of agents released from vascular targeted nanoconstructs. The transport problem for the released agent is solved using a finite volume scheme in terms of three governing parameters: the local wall shear rate $S$ , ranging from $10$ to $200\,\mathrm{s}^{-1}$ ; the wall filtration velocity $V_f$ , varying from $10^{-9}$ to $10^{-7}\,\mathrm{m}/\mathrm{s}$ ; and the agent diffusion coefficient $D$ , ranging from $10^{-12}$ to $10^{-9}\,\mathrm{m}^2/\mathrm{s}$ . It is shown that the percentage of released agent adsorbing on the vessel walls in the vicinity of the vascular targeted nanoconstructs reduces with an increase in shear rate $S$ , and with a decrease in filtration velocity $V_f$ and agent diffusivity $D$ . In particular, in tumor microvessels, characterized by lower shear rates ( $S = 10\,\mathrm{s}^{-1}$ ) and higher filtration velocities ( $V_f=10^{-7}\,\mathrm{m}/\mathrm{s}$ ), an agent with a diffusivity $D = 10^{-12}\,\mathrm{m}^2/\mathrm{s}$ (i.e. a 50 nm particle) is predicted to deposit on the vessel wall up to $30~\%$ of the total released dose. Differently, drug molecules, exhibiting a smaller size and much higher diffusion coefficient ( $D = 10^{-9}\,\mathrm{m}^2/\mathrm{s}$ ), are predicted to accumulate up to $70~\%$ . In healthy vessels, characterized by higher $S$ and lower $V_f$ , the largest majority of the released agent is redistributed directly in the circulation. These data suggest that drug molecules and small nanoparticles only can be efficiently released from vascular targeted nanoconstructs towards the diseased vessel walls and tissue.  相似文献   

6.
The results are reported of an experimental investigation of the soil thermal conductivity over a wide temperature range, for various water contents and two soil types. The results are particularly important in predictions of underground heat transfer, which require a quantitative understanding of the coupled dependence of the soil thermal conductivity on texture, temperature, and water content. In the research, comprehensive sets of thermal conductivity for Ottawa sand (coarse soil) and Richmond Hill fine sandy loam (medium soil) are experimentally obtained using the guarded hot-plate method, for temperatures ranging from $2\,^{\circ }\mathrm{C}$ 2 ° C to $92\,^{\circ }\mathrm{C}$ 92 ° C and water contents varying from complete dryness to full saturation. For both soils, the thermal conductivity is observed to vary in three stages with respect to increasing water content: a very minor increase as water content increases to the permanent wilting point, a steep increase as water content further increases to field capacity, and a minor increase (for temperatures less than $72\,^{\circ }\mathrm{C}$ 72 ° C ) or decrease for (temperatures greater than $72\,^{\circ }\mathrm{C}$ 72 ° C ) when the field capacity is exceeded. Then, on the basis of gathered datasets, a similar $Ke(S_{\mathrm{r}},T)$ Ke ( S r , T ) form of the soil thermal conductivity model by Tarnawski et al. is used to empirically fit the data. The resulted correlations fit the data well with their overall root-relative-mean-square percentage errors of 4.7 % and 6.1 % for Ottawa sand and Richmond Hill fine sandy loam, respectively, and are suitable for most engineering applications.  相似文献   

7.
In this study, the nanocrystalline nickel–cobalt ferrites $(\mathrm{Ni}_{1/2}\mathrm{Co}_{1/2}\mathrm{Fe}_{2}\mathrm{O}_{4})$ were prepared via the citrate route method at $27\,^{\circ }\mathrm{C}$ . The samples were calcined at $300\,^{\circ }\mathrm{C}$ for 3 h. The crystalline structure and the single-phase formations were confirmed by X-ray diffraction (XRD) measurements. Prepared materials showed the cubic spinel structure with m3m symmetry and Fd3m space group. The analyses of XRD patterns were carried out using POWD software. It gave an estimation of lattice constant “ $a$ ” of 8.3584 Å, which was in good agreement with the results reported in JCPDS file no. 742081. The crystal size of the prepared materials calculated by Scherer’s formula was 27.6 nm and the electrical conductivity was around $10^{-5}~\mathrm{S}\,\cdot \, \mathrm{m}^{-1}$ . The permeability component variations with frequency were realized. The magnetic properties of the prepared materials were analyzed by a vibrating sample magnetometer (VSM). It showed a saturation magnetization of $27.26\,\mathrm{emu} \cdot \mathrm{m}^{-1}$ and the behavior of a hard magnet.  相似文献   

8.
A commercially available calorimeter has been used to investigate the specific heat of a high-quality K $_{0.71}$ Na $_{0.29}$ Fe $_2$ As $_2$ single crystal. The addenda heat capacity of the calorimeter is determined in the temperature range $0.02 \, \mathrm{K} \le T \le 0.54 \, \mathrm{K}$ . The data of the K $_{0.71}$ Na $_{0.29}$ Fe $_2$ As $_2$ crystal imply the presence of a large $T^2$ contribution to the specific heat which gives evidence of $d$ -wave order parameter symmetry in the superconducting state. To improve the measurements, a novel design for a calorimeter with a paramagnetic temperature sensor is presented. It promises a temperature resolution of $\Delta T \approx 0.1 \, \mathrm{\mu K}$ and an addenda heat capacity less than $200 \, \mathrm{pJ/K}$ at $ T < 100 \, \mathrm{mK}$ .  相似文献   

9.
Flame temperatures (T), surface emissive powers (SEP) and irradiances (E) of large-scale JP-4 pool fires (d=2, 8, 16, 25 m) and di-tert-butyl peroxide (DTBP) pool fires (d=1.12 m, 3.4 m) are investigated experimentally and by CFD simulation. As experimental methods an infrared thermographic camera system with video-mixing unit is used for the determination of T, SEP and an ellipsoidal radiometer for the determination of E. The maximum frequency of time-averaged emission temperatures for JP-4 pool fire (d=16 m) are in a range of $ 793\,\mathrm{K} < \overline{T} < 1033$ and for DTBP pool fire (d=1.12 m) are a range of $ 1040\,\mathrm{K} < \overline{T} < 1480\,\mathrm{K}$ . For DTBP pool fire (d=1.12 m), the measurements result in $ \overline{\text{SEP}}\approx 130\,\mathrm{kW/m^{2}}$ which is up to a factor of ≈6 larger in comparison to hydrocarbon pool fires (d≈1 m). In a case of DTBP pool fire (d=3.4 m) with $ \overline{\text{SEP}} \approx 250\,\mathrm{kW/m^{2}}$ this factor is ≈5 compared to $ \overline{\text{SEP}} \approx 50\,\mathrm{kW/m^{2}}$ of LNG pool fire (d=4 m). By increasing the relative distance ?y/d from the pool rim, measured time averaged irradiances $ \overline{E}$ (?y/d) decrease and agree well with CFD predicted $ \overline{E}_{\text{CFD}}$ (?y/d). Also, there is a good agreement between the measured time averaged $ \overline{T}$ and $ \overline{\text{SEP}}$ of hydrocarbons and DTBP pool fires, with the predicted $ \overline{T}_{\text{CFD}}$ and $ \overline{\text{SEP}}_{\text{CFD}}$ values. The possibilities and nowadays limitations of CFD simulation of large pool fires are discussed. This study has shown that the risk potential of accidental pool fires referring to thermal radiation can be predicted much better than in the past.  相似文献   

10.
The purpose of this study is to further understanding of the structural, electronic, magnetic, and thermal properties of the full-Heusler compounds, ${\mathrm{{Co}}}_{2}$ Co 2 MnAl and ${\mathrm{{Co}}}_{2}$ Co 2 MnGa, using density functional theory. Electronic structure calculations will be performed using the full potential linear augmented plane wave. The electronic structures and magnetic properties of ${\mathrm{{Co}}}_{2}$ Co 2 MnZ (Z = Al, Ga) compounds with ${\mathrm{L}}2_{1 }$ L 2 1 structure are studied. It is shown that the calculated lattice constants and spin magnetic moments are in good agreement with experimental values using the general gradient approximation method. Thermal effects on some macroscopic properties of ${\mathrm{{Co}}}_{2}$ Co 2 MnZ (Z = Al, Ga) compounds are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the lattice constant, volume expansion coefficient, heat capacities, and Debye temperature with pressure and temperature in the ranges of 0 GPa to 18 GPa and 0 K to700 K have been obtained.  相似文献   

11.
A simple home-made open photoacoustic cell is used for measuring some of the thermal properties of nanoparticles of $\mathrm{{Co}}_{0.5}\mathrm{{Ni}}_{0.5\text{-- }2{x}}\mathrm{{Li}}_x\text{ Fe }_{2+{x}}\mathrm{{O}}_{4}$ Co 0.5 Ni 0.5 -- 2 x Li x Fe 2 + x O 4 (with $x$ x ranging from 0.00 to 0.25 in steps of 0.05) prepared by the citrate precursor method. The influence of sintering temperatures on the thermal properties of a selected sample for $x=0.25$ x = 0.25 was also investigated. The thermal-diffusivity and thermal-effusivity measurements of the investigated samples are obtained by measuring the photoacoustic signal as a function of the modulated frequency depending on the existence of a reference sample. The thermal diffusivity of the as-prepared samples decreases as the $\mathrm{{Li}}^{1+}$ Li 1 + content increases except for the samples for $x=0.15$ x = 0.15 and $x=0.20$ x = 0.20 . These exceptions may be due to a better magnetic ordering in these samples leading to reduced phonon scattering and a higher thermal diffusivity. Finally, the thermal diffusivity of the sintered samples increases as the sintering temperature increases due to the increase in grain size.  相似文献   

12.
In order to obtain information on dynamics of helium films in the nondegenerate fluid region, we have performed a pulsed-NMR experiment at 3.29 MHz on $^3$ He films adsorbed in straight 2.4 nm channels of FSM silicates down to 0.54 K. In general, the spin-lattice and spin-spin relaxation times $T_1$ and $T_2$ were explained in terms of the two-dimensional Bloembergen–Purcell–Pound model for dipolar relaxation. Temperature dependences of $T_1$ in submonolayer $^3$ He films show a minimum, indicating that the dipolar-field correlation time $\tau _\mathrm {c}$ is about $\omega ^{-1}=4.8\times 10^{-8}$ s. The temperature $T_\mathrm {min}$ of the $T_1$ minimum monotonically lowers with increasing coverage, suggesting that $^3$ He adatoms become more mobile at higher coverages. The low-dimensional property of $^3$ He adatoms is observed as the separation of $T_1$ and $T_2$ above $T_\mathrm {min}$ where $\omega \tau _\mathrm {c}<1$ . On the other hand, several features specific to films in the nanochannel geometry were also found. Especially, the temperature dependence of $T_2$ becomes very small just below $T_\mathrm {min}$ and shows a shoulder at lower temperatures. This anomaly has not been observed in $^3$ He adsorbed in wider pores or on flat surfaces, so that it is considered to be characteristic of $^3$ He films confined in narrow channels with a diameter of a few nm.  相似文献   

13.
$\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 magnetoelectric (ME) ceramics have been synthesized and investigated. The ME effect can be described as an induced electric polarization under an external magnetic field or an induced magnetization under an external electric field. The materials in the ME effect are called ME materials, and they are considered to be a kind of new promising materials for sensors, processors, actuators, and memory systems. Multiferroics, the materials in which both ferromagnetism and ferroelectricity can coexist, are the prospective candidates which can potentially host the gigantic ME effect. $\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 , an Aurivillius compound, was synthesized by sintering a mixture of $\mathrm{Bi}_{2}\mathrm{O}_{3}, \mathrm{Fe}_{2}\mathrm{O}_{3}$ Bi 2 O 3 , Fe 2 O 3 , and $\mathrm{TiO}_{2}$ TiO 2 oxides. The precursor materials were prepared in a high-energy attritorial mill for (1, 5, and 10) h. The orthorhombic $\mathrm{Bi}_{5}\mathrm{Ti}_{3}\mathrm{FeO}_{15}$ Bi 5 Ti 3 FeO 15 ceramics were obtained by a solid-state reaction process at 1313 K. The ME voltage coefficient ( $\alpha _\mathrm{ME}$ α ME ) was measured using the dynamic lock-in method. The highest ME voltage coefficient ( $\alpha _\mathrm{ME} = 8.28\,\text{ mV }{\cdot }\text{ cm }^{-1}{\cdot }\text{ Oe }^{-1})$ α ME = 8.28 mV · cm ? 1 · Oe ? 1 ) is obtained for the sample milled for 1 h at $H_\mathrm{DC }= 4$ H DC = 4  Oe (1 Oe = 79.58  $\text{ A }{\cdot }\text{ m }^{-1})$ A · m ? 1 ) .  相似文献   

14.
On the basis of Lee–Low–Pines unitary transformation, the influence of magnetic field and LO phonon effects on the energy of spin polarization states of strong-coupling bipolarons in a quantum dot (QD) is studied by using the variational method of Pekar type. The variations of the ground state energy $E_0$ and the first excited state the energy $E_1$ of bipolarons in a two-dimensional QD with the confinement strength of QDs $\omega _0$ , dielectric constant ratio $\eta $ , electron–phonon coupling strength $\alpha $ and cyclotron resonance frequency of the magnetic field $\omega _{c}$ are derived when the influence of the spin and external magnetic field is taken into account. The results show that both energies of the ground and first excited states ( $E_0$ and $E_1)$ consist of four parts: the single-particle energy of electrons $E_\mathrm{e}$ , Coulomb interaction energy between two electrons $E_\mathrm{c}$ , interaction energy between the electron spin and magnetic field $E_\mathrm{S}$ and interaction energy between the electron and phonon $E_{\mathrm{e-ph}}$ ; the energy level of the first excited state $E_1$ splits into two lines as $E_1^{(1+1)}$ and $E_1^{(1-1)}$ due to the interaction between the single-particle “orbital” motion and magnetic field, and each energy level of the ground and first excited states splits into three “fine structures” caused by the interaction between the electron spin and magnetic field; the value of $E_{\mathrm{e-ph}}$ is always less than zero and its absolute value increases with increasing $\omega _0$ , $\alpha $ and $\omega _c$ ; the effect of the interaction between the electron and phonon is favorable to forming the binding bipolaron, but the existence of the confinement potential and Coulomb repulsive energy between electrons goes against that; the bipolaron with energy $E_1^{(1-1)}$ is easier and more stable in the binding state than that with $E_1^{(1+1)}$ .  相似文献   

15.
Yu Liu 《Granular Matter》2014,16(1):133-139
A theoretical calculation method for the flow rate of granular matter from an inclined orifice is discussed in this article and for the inclination angles at $\theta \le 90^{\circ }$ , a theoretical relation between the flow rate $Q$ and inclination angle $\theta $ is derived; and for the inclination angles at $\theta >90^{\circ }$ , a semi-theoretical relation is established. From the relations, we found that the ratio of the flow rate from a vertical orifice, $Q_{90}$ , to that from a horizontal orifice, $Q_{0}$ , is equal to the sine of the angle of repose $\theta _{\mathrm{r}}$ , i.e., $Q_{90} /Q_0 =\sin \theta _{\mathrm{r}} $ . The theoretical relations are tested by means of the experimental data and the results indicate that the theoretical calculating values are in good agreement with the experimental data over a wide range of the inclination angles. Therefore, the formula proposed in this article can be used for the theoretical calculation of the flow rate of granular matter from an inclined orifice. The relation $Q_{90} /Q_0 =\sin \theta _{\mathrm{r}}$ may be used as an alternative approach to obtaining $\theta _{\mathrm{r}}$ : measuring $Q_{90}$ and $Q_{0}$ , and then calculating $\theta _{\mathrm{r}} $ by using formula $\theta _{\mathrm{r}} =\arcsin (Q_{90} /Q_0 )$ .  相似文献   

16.
Densities, $\rho $ , viscosities, $\eta $ , speeds of sound, $u$ , and refractive indices, $n_\mathrm{D} $ , of binary liquid mixtures of 2-ethyl-1-hexanol with benzene, chlorobenzene, and bromobenzene have been measured over the entire range of composition at 298.15 K, 303.15 K, and 308.15 K and at atmospheric pressure. From the experimental data of the density, speed of sound, viscosity, and refractive index, the values of the excess molar volume, $V^\mathrm{E}$ , isentropic compressibility, ${\kappa _{S}}$ , and deviations in molar refraction, $\Delta R$ , have been calculated. The viscosity data have been correlated using McAllister’s three-body interaction model at different temperatures. The calculated excess and deviation functions have been analyzed in terms of molecular interactions and structural effects.  相似文献   

17.
The thermal conductivity of ten ionic liquids (ILs) based on the anions \([\mathrm{C(CN)}_{3}]^{-}\) (tricyanomethanide) and \([\mathrm{B(CN)}_{4}]^{-}\) (tetracyanoborate) carrying a homologous series of the [alkyl-MIM] \(^{+}\) (1-alkyl-3-methylimidazolium) cations [EMIM] \(^{+}\) (ethyl), [BMIM] \(^{+}\) (butyl) [HMIM] \(^{+}\) (hexyl), [OMIM] \(^{+}\) (octyl), [DMIM] \(^{+}\) (decyl) was measured by a steady-state guarded parallel-plate instrument in the temperature range between (283.15 and 353.15) K at atmospheric pressure with a total uncertainty of 5 % ( \(k\,=\,2\) ). Furthermore, the refractive index required for data evaluation and the density, which is an important property in the developed prediction method for the thermal conductivity, were determined. In general, the measured thermal conductivities of the probed ILs decrease with increasing temperature and increasing alkyl-chain length of the cation. Regarding the influence of the anion, somewhat smaller values for the \([\mathrm{B(CN)}_{4}]^{-}\) -based ILs compared to the \([\mathrm{C(CN)}_{3}]^{-}\) -based ILs carrying the same cation are observed. Our previously developed simple prediction method for the thermal conductivity of ILs at 293.15 K using only information on the molar mass and the density could be improved. By the combination of this approach with the temperature dependence of the density, an extended empirical correlation additionally describing the temperature dependence of the thermal conductivity of ILs is recommended. This correlation represents all experimental thermal-conductivity data in the literature with a standard deviation of less than 7 %.  相似文献   

18.
Thermal Conductivity of Standard Sands. Part III. Full Range of Saturation   总被引:1,自引:0,他引:1  
The thermal conductivity $(\lambda )$ ( λ ) of three unsaturated standard quartz sands (Ottawa C-109 and C-190, and Toyoura) was measured by a transient thermal-conductivity probe, at room temperature of approximately $25\,^{\circ }\text{ C }$ 25 ° C and at loose and tight compactions. The measurements were carried out at different degrees of saturation $(S_\mathrm{r})$ ( S r ) from dryness to full saturation. In general, a sharp $\lambda $ λ increase was observed at low $S_\mathrm{r}$ S r , followed by a moderate rise until full saturation. However, experiments on loosely compacted C-190 samples revealed $\lambda $ λ deviation from a general trend ( $\lambda $ λ vs $S_\mathrm{r})$ S r ) caused by water percolation. Alternatively, successful experiments were carried out on loosely packed unsaturated C-190 samples using 1 % agar gel. For loosely compacted C-109 and Toyoura, $\lambda $ λ data obtained from 1 % agar gel closely agreed with $\lambda $ λ data for water as a saturation medium. The measured data were used to verify a model by de Vries for unsaturated soils. The model largely underestimates experimental data at $S_\mathrm{r}<0.5$ S r < 0.5 and produces an overall root-mean-square error of about $0.2\, \text{ W }~{\cdot }~\text{ m }^{-1}~{\cdot }~\text{ K }^{-1}$ 0.2 W · m ? 1 · K ? 1 . Measured $\lambda $ λ data agreed with data by a steady-state technique (a guarded hot-plate apparatus) at dryness and full saturation and exceeded the steady-state data in the unsaturated region. However, TCP data can be considered more reliable due to a lower temperature increase during $\lambda $ λ measurements and a shorter testing time. Consequently, in the case of unsaturated soils, evaporation and migration of water and steam can be avoided.  相似文献   

19.
We prove that an automorphism of order 3 of a putative binary self-dual $[120, 60, 24]$ [ 120 , 60 , 24 ] code $C$ C has no fixed points. Moreover, the order of the automorphism group of $C$ C divides $2^a\cdot 3 \cdot 5\cdot 7\cdot 19\cdot 23\cdot 29$ 2 a · 3 · 5 · 7 · 19 · 23 · 29 with $a\in \mathbb N _0$ a ∈ N 0 . Automorphisms of odd composite order $r$ r may occur only for $r=15, 57$ r = 15 , 57 or $r=115$ r = 115 with corresponding cycle structures $3 \cdot 5$ 3 · 5 - $(0,0,8;0), 3\cdot 19$ ( 0 , 0 , 8 ; 0 ) , 3 · 19 - $(2,0,2;0)$ ( 2 , 0 , 2 ; 0 ) or $5 \cdot 23$ 5 · 23 - $(1,0,1;0)$ ( 1 , 0 , 1 ; 0 ) respectively. In case that all involutions act fixed point freely we have $|\mathrm{Aut}(C)| \le 920$ | Aut ( C ) | ≤ 920 , and $\mathrm{Aut}(C)$ Aut ( C ) is solvable if it contains an element of prime order $p \ge 7$ p ≥ 7 . Moreover, the alternating group $\mathrm{A}_5$ A 5 is the only non-abelian composition factor which may occur in $\mathrm{Aut}(C)$ Aut ( C ) .  相似文献   

20.
Speeds of sound of (l-alanine/l-glutamine/glycylglycine $\,+\, 0.512\, {\mathrm{mol}}\cdot {\mathrm{kg}}^{-1}$ + 0.512 mol · kg ? 1 aqueous ${\mathrm{KNO}}_{3}/0.512\, {\mathrm{mol}}\cdot {\mathrm{kg}}^{-1}$ KNO 3 / 0.512 mol · kg ? 1 aqueous ${\mathrm{K}}_{2}{\mathrm{SO}}_{4}$ K 2 SO 4 ) systems have been measured for several molal concentrations of amino acid/peptide at different temperatures: $T$ T = (298.15 to 323.15) K. Using the speed-of-sound and density data, the parameters, partial molar isentropic compressibilities $\phi _{\kappa }^{0}$ ? κ 0 and transfer partial molar isentropic compressibilities $\Delta _{\mathrm{tr}} \phi _{\kappa }^{0}$ Δ tr ? κ 0 , have been computed. The trends of variation of $\phi _{\kappa }^{0}$ ? κ 0 and $\Delta _{\mathrm{tr}} \phi _{\kappa }^{0}$ Δ tr ? κ 0 with changes in molal concentration of the solute and temperature have been discussed in terms of zwitterion–ion, zwitterion–water dipole, ion–water dipole, and ion–ion interactions operative in the systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号