首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organic Electronics》2014,15(6):1222-1228
In this work, we fabricated nanostructured transparent organic light-emitting diodes (TrOLEDs) using phosphorescent materials and a WO3 layer with various periods of perforation, to improve light extraction. Using these nanostructured TrOLEDs, higher external quantum efficiency (EQE) values were achieved, of 7.8% (bottom emission), and 2.0% (top emission) at 100 mA/cm2. Compared to conventional TrOLEDs, these were 28% and 33% higher for bottom and top emission, respectively. In addition, by varying the periods of the nanostructures, we found that the extraction of the trapped surface plasmon mode was mainly responsible for enhancing outcoupling efficiency. When adopting light extraction methods in TrOLEDs, one should consider the influence of the optical clarity of devices. The nanostructured TrOLEDs in this study showed good optical clarity as the total transmittance was consistent with direct transmittance. Photographs of the TrOLEDs also showed neither optical blur nor haziness. Lastly, the total transmittance of the nanostructured TrOLEDs was similar to that of a conventional TrOLED except for two points where light coupling to the surface plasmon mode and waveguide mode occurred.  相似文献   

2.
Organic light emitting diodes (OLEDs) with surface plasmon (SP) enhanced emission have been fabricated. Gold nanoclusters (GNCs) deposited using thermal evaporation technique has been used for localization of surface plasmons. Size of GNCs and distance of GNCs from the emissive layer have been optimized using steady state and time resolved photoluminescence (PL) results. 3.2 Times enhancement in PL intensity and 2.8 times enhancement in electroluminescence intensity of OLED have been obtained when GNCs of size 9.3 nm has been introduced at a distance of 5 nm from emissive layer. Distance dependence of energy transfer efficiency between exciton and SPs was found to be of 1/R4 type, which is typically the dependence for dipole-surface energy transfer.  相似文献   

3.
We demonstrate the enhanced optical and electrical properties of an ultrathin silver (Ag) film by applying an aluminum (Al) seed layer between LiF and Ag as a transparent cathode for higher-transparency organic light-emitting diodes (OLEDs). Although the thickness ranges from 4 to 8 nm, the ultrathin Ag film is a continuous and uniform bulk-like film with an Al seed layer, which suppresses the surface plasmon absorption. Compared to an Ag-only cathode, the measured transmittance spectra were considerably increased, comparable with the theoretical calculations of a bulk Al/Ag bilayer film. The Al/Ag bilayer cathode has a transmittance of 87% at a 550 nm wavelength and a sheet resistance of 19.5 Ω/sq with a 4-nm-thick Ag layer. The transparent OLED devices that employed the Al/Ag cathode showed a transmittance of 72% at a 550 nm wavelength for an Ag thickness of 6 nm.  相似文献   

4.
《Organic Electronics》2014,15(4):961-967
We report on the solution-processed mixture of Au nanoparticles (NPs) and MoOX as an inter-layer in organic light-emitting devices (OLEDs), leading to the enhanced light emission and good stability. An impressive enhancement in current efficiency and power efficiency is achieved up to 70% and 100%, respectively. A systematic study to the effect of the Au NPs:MoOX inter-layer on OLEDs demonstrates that the improved electrical properties is mainly ascribed to the enhanced hole injection due to the high work function of MoOX and the good conductivity of Au NPs, and the enhanced optical properties is mainly attributed to the localized surface plasmon induced by Au NPs, which makes a great contribution to the improved efficiency. Besides, Au NPs:MoOX inter-layer also behaves superior to the frequently-used polyethylene dioxythiophene:polystyrene sulfonate (PEDOT:PSS) in device stability. The decay ratio for Au NPs:MoOX based device is 60% after 80 h, while it is nearly dying out for the device with PEDOT:PSS inter-layer.  相似文献   

5.
Enhanced efficiency and reduced efficiency roll-off in phosphorescent organic light-emitting diodes (PhOLEDs) are realized by interposing a solution-processed gold nanoparticle (GNP)-based interlayer between the anode and the hole-injection layer. Transient photoluminescence measurements elucidate that a reduced lifetime of the triplet excitons was observed for samples having a GNP-interlayer as compared to a control sample without the GNP-interlayer. The decrease in the triplet exciton lifetime, caused by the coupling between the triplet excitons and the localized surface plasmons (LSPs) excited by the GNPs, enables reducing the triplet–triplet and triplet–polaron annihilation processes, thereby a reduced efficiency roll-off in PhOLEDs. The presence of a GNP-interlayer also acts as an optical out-coupling layer contributing to the efficiency enhancement and was demonstrated by the theoretical simulation.  相似文献   

6.
We report low voltage driving and highly efficient blue phosphorescence organic light emitting diodes (PHOLEDs) fabricated by soluble process. A soluble small molecule mixed host system consisting of hole transporting 4,4’,4’’ tris(N-carbazolyl)triphenylamine (TCTA) and bipolar carrier transporting 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy) exhibits high solubility with smooth surface properties. Moreover, this small molecule host shows the smoothest morphological property similar to a vacuum deposited amorphous film. A low driving voltage of 5.4 V at 1000 cd/m2 and maximum external quantum efficiency 14.6% obtained in the solution processed blue PHOLEDs are useful for large area low cost manufacturing.  相似文献   

7.
Down-conversion structure white organic light-emitting diodes (WOLEDs), in which white light is generated by a blue emission organic light-emitting diodes (OLEDs) in combination with a color conversion layer (CCL) outside the substrate, has attracted extensive interest due to its significant advantages in low cost and stabilized white-light emissions. However, low color-conversion efficiency of CCL is still a bottleneck for the performance improvement of down-conversion WOLEDs. Here, we demonstrate an approach to enhance the color-conversion efficiency of CCL-WOLEDs by localized surface plasmon resonance (LSPR) effect. In this approach, a blend of Ag nanoparticles and polyvinyl alcohol (PVA) is solution-deposited between the blue organic light emitting diodes and color-conversion layer. Based on the LSPR effect of this modified structure, the color conversion efficiency has improved 32%, from 45.4% to 60%, resulting a 14.4% enhancement of the current efficiency, from 9.73 cd/A to 11.14 cd/A. Our work provides a simple and low-cost way to enhance the performance of down-conversion WOLEDs, which highlights its potential in illumination applications.  相似文献   

8.
表面等离子共振传感器将生物学识别机制与光电装置相结合,把生物信号转化为光电信号,非常适合于对生物分子相互作用进行动态实时研究.表面等离子共振技术具有检测过程方便快捷,灵敏度高;无需标记样品,大多数情况下,不需要对样品进行处理;能在混浊的甚至不透明的样品中进行等特点.本文以表面等离子技术为基础,分析了当前应用广泛的Kretschmann模型特点,回顾和讨论了表面等离子共振传感系统的研究概况,旨在将表面等离子共振技术及相关研究成果展示给读者.  相似文献   

9.
《Organic Electronics》2014,15(7):1401-1406
Efficient solution-processed blue phosphorescent organic light-emitting diodes (OLEDs) featuring with halogen-free solvent processing are fabricated in this study. The organic molecule 3,6-bis(diphenylphosphoryl)-9-(4′-(diphenylphosphoryl) phenyl)-carbazole (TPCz) that possesses good solubility in halogen-free polar solvents is selected to serve as the host of blue phosphorescent iridium(III) [bis(4,6-difluorophenyl)-pyridinato-N,C2]-picolinate (FIrpic) dopant. The morphology of the TPCz:FIrpic emissive layer prepared with different polar solvents including chlorobenzene (CB), n-butanol (ButA) and isopropanol (IPA) and the effect on their electroluminescent performance have been investigated in detail. It is found that the more polar halogen-free solvent IPA restrains the FIrpic aggregation and renders a more densely packed emissive layer as compared to the CB-processed counterpart, which results in the enhanced electroluminescent performance. The luminous efficiency and power efficiency of the blue phosphorescent OLEDs prepared with CB are merely 5.7 cd/A and 3.3 lm/W, respectively. When using more polar halogen-free solvent IPA, the efficiencies are enhanced to 22.3 cd/A and 15.6 lm/W, about 2.9 and 3.7-time increment, respectively. This work provides an approach to fabricate efficient solution-processed phosphorescent OLEDs with environmental-friendly solvents, which is highly required in large-scale solution-processed manufacturing.  相似文献   

10.
The simulation mechanism of surface plasmon polaritons (SPPs) and localized surface plasmon (LSP) in different structures was studied, including the Au reflection grating (Au grating), Au substrate with dielectric ribbons grating (Au substrate grating), and pure electric conductor (PEC) substrate with Au ribbons grating (Au ribbons grating). And the characteristics of the Smith-Purcell radiation in these structures were presented. Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves. Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating, only 40-times enhancement of the radiation intensity was obtained by excited SPPs. However, the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability, with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating. The results presented here provide a way of developing miniature, integratable, tunable, high-power-density radiation sources from visible light to ultraviolet rays at room temperature.  相似文献   

11.
We report on the spectral tunability of white light by localized surface plasmon (LSP) effect in a colour converting hybrid device made of CdSe/ZnS quantum dots (QDs) integrated on InGaN/GaN blue light-emitting diodes (LEDs). Silver (Ag) nanoparticles (NPs) are mixed with QDs for generating LSP effect. When the plasmon absorption of Ag NPs is synchronized to the QW emission at 448 nm, the NPs selectively absorb the blue light and subsequently enhance the QD emission. Using this energy transfer scheme, the (xy) chromaticity coordinates of the hybrid white LED was tuned from (0.32, 0.17) to (0.43, 0.26), and thereby generated warm white light emission with correlated colour temperature (CCT) around 1800 K. Moreover, a 47% enhancement in the external quantum efficiency (EQE) was realized.  相似文献   

12.
阴极蒸镀和隔离层对有机发光二极管性能的影响   总被引:1,自引:1,他引:1  
制备了简单结构的有机发光二极管(OLED)ITO/NPB/Alq3/Al/Ag。实验结果表明,快速蒸镀法制备的Ag阴极越厚,器件性能越差,而慢速蒸镀200nmAg阴极时器件性能也较差。在Alq3与Al阴极之间插入BCP/C60/LiF隔离层后,即使快速蒸镀法制备的Ag厚达280nm,器件的最大电流密度、最大亮度和最大电流效率仍分别高达248.6mA/cm2、5380.7cd/m2和3.52cd/A。隔离层不仅保护NPB和Alq3基本不被玻璃化,还很好地与Alq3和Al阴极匹配,大大提高了器件性能。  相似文献   

13.
制备了结构为ITO/MoO3(x nm)/NPB(40nm)/CBP:14%GIr1(12.5nm)/CBP:6%R-4b(5nm)/C BP:14% GIr1(12.5nm)/BCP(10nm)/Alq3( 40nm)/LiF(1nm)/Al(100nm)的红绿磷光器件,G Ir1和R-4B分别为新型绿色和 红色磷光染料,采用绿-红-绿掺杂顺序,结合BCP对空穴的有效限制作用,研究了不同MoO 3厚度器件的发光 机理。结果表明,在MoO3为40nm时,器件发光性能较好,在电压 为5V、亮度为100cd·m-2时,得到最大的 电流效率为16.91cd·A-1。为提高器件光效,增加TCTA电子 阻挡层,获得了最高电流效率20.01cd·A-1。原因主要是, TCTA的HOMO能级介于NPB和CBP之间,促进空穴注入;TCTA较高的三线态能量对发光层激子的 限制。  相似文献   

14.
In this study, transparent conductive oxide (TCO) electrodes with highly enhanced flexibility were developed on polymer substrates for application in flexible organic emitting diodes (OLEDs). TCOs, particularly indium tin oxide (ITO), have superior functional properties as electrodes compared to other materials but are inherently brittle, which significantly limits the bendability of the flexible devices. To improve the fracture strength of ITO on a polymer substrate under bending, we investigated the effect of expanding the film surface areas on the reduction of the stresses induced by an external bending force. Regularly spaced channels were imprinted at an elevated temperature onto polymer substrate surfaces using Teflon®. Then, both amorphous (a-ITO) and crystalline ITOs (c-ITO) were dc magnetron sputter deposited. As the channel patterns on the substrate surfaces were reflected into the growing film surfaces, the ITO surfaces became unidirectionally wavy, which increased the surface area by approximately 500%. The electrical and optical properties of the wavy ITOs were measured using a four-point probe and a UV–visible spectrophotometer, respectively, and the flexibility was evaluated with cyclic bending tests. For comparison, flexible OLEDs were also fabricated on both wavy ITO and conventional ITO. Our results revealed that the functional properties of ITOs with expanded surfaces are equivalent to those of conventional ITOs on the polymer substrates. However, their cyclic bending stability was significantly improved. After 10,000 cycles at a bending radius of 10 mm, the electrical resistivity change was less than half of the conventional ITO. The current density–voltage (J–V) characteristics of the flexible OLEDs on the wavy ITOs were also nearly equal to those on conventional ITOs.  相似文献   

15.
Although both high-index substrates and horizontal-dipole emitters have been shown to be facile approaches for enhancing OLED (organic light emitting diode) light extraction, the full benefits and potential of their combination for OLED optical out-coupling have not been thoroughly studied and explored. Simulation studies indicate that very high optical coupling efficiency into substrates ϕsub (and perhaps similarly high OLED external quantum efficiencies) of ~90% can be possibly obtained with both high-index substrates (refractive index >1.8–1.9) and highly horizontal-dipole emitters (horizontal dipole ratio >85%), together with adoption of low-index or index-matching carrier transport layers and optimization of organic layer and transparent electrode thicknesses. With these judicious device design conditions, all waveguided modes and surface plasmon modes in devices can be effectively suppressed for optimal optical out-coupling. Finally, combining the sapphire substrate having high index of n~1.78, the recently developed OLED emitters having high horizontal emitting dipole ratio of up to 87%, and simple external extraction lens, OLED devices having external quantum efficiency of over 80% was successfully realized.  相似文献   

16.
Understanding the influence of residual gases present during vacuum deposition of organic light-emitting diodes (OLEDs) and their effect on the device lifetime and the electrical characteristics of OLEDs is crucial for advancing industrial fabrication. In order to gain a more in-depth understanding, the influence of residual nitrogen, oxygen, and water vapor on lifetime and electrical characteristics is investigated. This is achieved by introducing the residual gases into the evaporation chamber through a needle valve while monitoring the partial pressures with the help of a mass spectrometer. We find that water vapor introduces a series resistance to the OLED while the other gases do not influence the electric characteristics. The presence of oxygen or nitrogen impacts the lifetime of the OLEDs by the same amount. Water vapor introduces an additional, even faster degradation process within the first hours of OLED operation. The electrically stressed OLEDs are analyzed by laser desorption/ionization time-of-flight mass spectroscopy. We identify the dimerisation of BPhen as well as the complexation reaction of αα-NPD with an Ir(piq)2 fragment as sources of device degradation.  相似文献   

17.
The correlation of accumulation charges at the interfaces of organic layers and carrier mobility in organic light emitting devices (OLEDs) were investigated through the impedance versus voltage (Z-V) characteristics of devices. The properties of devices with various combinations of cathode structures, HTLs and ETLs were investigated to understand the impedance transition in Z-V characteristics of OLEDs. It was observed that there is an extra impedance transition before devices turn on when the hole mobility in the HTL is much greater than the electron mobility in the ETL in the devices, which makes the Z-V characteristics a potential tool to compare the electron mobility in ETL and hole mobility in HTL.  相似文献   

18.
An optical energy loss mechanism including the surface plasmon polariton (SPP) loss, wave guide (WG) mode and substrate mode in organic light-emitting diodes (OLEDs) is introduced based on CPS theory. The theoretical calculations of both the out-coupling efficiency (OCE) and the external quantum efficiency (EQE) of OLEDs are proposed. MATLAB tools are applied to simulate the optical model and provide the results of the two efficiencies. It is demonstrated that, the OCE and the EQE in a green phosphorescence OLED with optimized device structure can reach up to 20% and 27%, respectively (intrinsic quantum efficiency q = 90% assumed). The simulation results based on the theoretical model are further validated experimentally.  相似文献   

19.
A surface initiated oxidative coupling method was developed as a crosslinking approach of hole transport materials for solution processed organic light-emitting diodes. The surface initiated crosslinking method was better than bulk oxidative crosslinking method in terms of quantum efficiency and lifetime of the organic light-emitting diodes by suppressing exciton quenching by the hole transport layer. Doubled efficiency and quadrupled lifetime were obtained using the new crosslinking approach without any chemical modification of the hole transport material.  相似文献   

20.
When applying the voltage pulses (6 V) to the organic light-emitting diode based on tris(8-hydroxyquinolinato) aluminium (Alq3) as the electron transporting layer, current density and luminance increased by 16% and 20%, respectively, by providing the reverse bias (−16 V) during the off-period. By using displacement current measurement, we can deduce that such an enhancement resulted from the interfacial positive charges trapped at the Alq3/cathode interface, with the relaxation time ∼0.4 ms. By doping the organic material as the carrier trapping sites at Alq3/cathode interface, such current density and luminance increase can be further enhanced. 25% and 36% increase in current density and luminance was demonstrated with such driving technique, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号