首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The water−based conductive polymer, poly(3,4−ethylenedioxythiophene), doped with poly(styrene sulfonate) (PEDOT:PSS), has received much attention for its utility as a printable electrode due to its transparency, thermal stability, and processability; however, the electrical properties of devices prepared with printed PEDOT:PSS electrodes are generally inferior to those of devices fabricated with evaporated metal electrodes or their inorganic counterparts. Here, we show that the electrical performances of polymer thin film transistors could be improved by doping the PEDOT:PSS chains used as source and drain electrodes. The addition of HAuCl4 to the PEDOT:PSS solution increased the electrical conductivity and work function of the electrodes. The PEDOT:PSS film doped with 10 mM HAuCl4 provided a field effect mobility exceeding 0.01 cm2V−1s−1, a factor of 7 greater than the value obtained from the device prepared with pristine PEDOT electrodes.  相似文献   

2.
Symmetric and fast (~5 ms) on-to-off and off-to-on drain current switching characteristics have been obtained in screen printed organic electrochemical transistors (OECTs) including PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid)) as the active transistor channel material. Improvement of the drain current switching characteristics is made possible by including a carbon conductor layer on top of PEDOT:PSS at the drain electrode that is in direct contact with both the channel and the electrolyte of the OECT. This carbon conductor layer suppresses the effects from a reduction front that is generated in these PEDOT:PSS-based OECTs. In the off-state of these devices this reduction front slowly migrate laterally into the PEDOT:PSS drain electrode, which make off-to-on switching slow. The OECT including carbon electrodes was manufactured using only standard printing process steps and may pave the way for fully integrated organic electronic systems that operate at low voltages for applications such as logic circuits, sensors and active matrix addressed displays.  相似文献   

3.
We demonstrate highly conductive poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) films introduced with a newly investigated solvent 2-ethoxyethanol. The films are optimized by simple solvent post treatment and show enhanced conductivities and reduced sheet resistances. Solvent post treatment for 2-ethoxyethanol added PEDOT:PSS films reduces insulating PSS and forms conductive PEDOT networks in conductive films, resulting in improved electrical properties. ITO-free white OLEDs are fabricated with post-treated PEDOT:PSS electrodes and show almost equal performance to ITO-based OLEDs. Our work demonstrate that the conductive PEDOT:PSS electrode optimized by 2-ethoxyethanol and post treatment promises its potential as alternative transparent electrode in flexible, low-cost, high-performance ITO-free OLEDs.  相似文献   

4.
Phenol as one of the most polar solvent was used to enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. The conductivity of PEDOT:PSS films improved to 1193 S/cm after treatment with phenol vapor and 1054 S/cm after treatment with phenol drop. The treated films also showed high transmittance in the visible region which is one of the crucial factors for optoelectronic devices such as organic solar cells and light emitting diodes. The mechanism of conductivity enhancement of treated thin PEDOT:PSS films was investigated by atomic force microscopy (AFM) and UV/Vis spectrophotometer. The AFM images showed that the ratio of PEDOT to PSS at top most of the surface was increased for treated film. Rearrangement of PEDOT segment throughout the film and hence conformational changes are the reasons for enhancement of conductivity. The modified PEDOT:PSS films were used as electrode for ITO-free organic solar cells (OSCs). These ITO-free OSCs showed almost equal operation to those for ITO electrodes.  相似文献   

5.
In this study, we investigate the optimization of printed (3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) as source/drain electrodes for organic thin film transistors (OTFTs) through electrohydrodynamic (EHD) printing process. The EHD-printed PEDOT:PSS electrodes should fulfill the prerequisites of not only high conductivity but also optimum surface tension for successful jetting. The conductivity of PEDOT:PSS was dramatically enhanced from 0.07 to 352 S/cm by the addition of dimethylsulfoxide (DMSO). To use the DMSO-treated PEDOT:PSS solution in the EHD printing process, its surface tension was optimized by the addition of surfactant (Triton X-100), which was found to enable various jetting modes. In the stable cone-jet mode, the patterning of the modified PEDOT:PSS solution was realized on the surface-functionalized SiO2 substrates; the printed line widths were in the range 384 to 81 μm with a line resistance of 8.3 × 103 Ω/mm. In addition, pentacene-based OTFTs employing the EHD-printed PEDOT:PSS as source and drain electrodes were found to exhibit electrical performances superior to an equivalent vacuum-deposited Au-based device.  相似文献   

6.
The electrical conductivity and Seebeck coefficient of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films were simultaneously improved by adding an ionic liquid (IL) into a polymer solution of the polymers. The maximum electrical conductivity of such a PEDOT:PSS/IL film reached 174 S cm−1, more than an order of magnitude higher than that of pure PEDOT:PSS film, and the maximum Seebeck coefficient was up to 30 μV K−1, more than twice the value for pure PEDOT:PSS film. This behavior is different from conventional thermoelectric (TE) materials, whose TE properties are strongly correlated, such as increasing electrical conductivity with increasing carrier concentration, usually resulting in a logarithmic decrease in Seebeck coefficient. Atomic force microscopy images of the PEDOT:PSS/IL films indicated that the ILs induced formation of a particular three-dimensional structure of highly conducting PEDOT grains, resulting in improvement of the TE performance of PEDOT:PSS films.  相似文献   

7.
Thin film electrodes are becoming increasingly common for interfacing with tissue. However, their long-term stability has yet to be proven in neuromodulation applications where electrical stimulation over months to years is desired. Here, the stability of pristine and PEDOT:PSS-coated Au, as well as pristine PEDOT:PSS microelectrodes are examined over a period of 3 months in an accelerated aging setup where they are exposed to current stimulation, hydrogen peroxide, mechanical agitation, and high temperature. Pristine PEDOT:PSS electrodes show the highest stability, while pristine Au electrodes show the lowest stability. Failure mode analysis reveals that delamination and Au corrosion are the key drivers of electrode degradation. The PEDOT:PSS coating slows down Au corrosion to a degree that depends on the overlap between the two films. The results demonstrate that pristine PEDOT:PSS electrodes represent a promising way forward toward thin film devices for long-term in vivo neuromodulation applications.  相似文献   

8.
The electrical conductivity of poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films was significantly improved without losing the optical transparency by treating the films with solution of 2-Methylimidazole in ethanol. The maximum electrical conductivity of such a thin film reached 930 S cm−1, more than 1150 order of magnitude higher than that of pure PEDOT:PSS film. The mechanism of conductivity enhancement of treated thin PEDOT:PSS films was explored by atomic force microscopy (AFM) and UV/VIS spectrophotometer. The AFM scans show that the surface of the 2-Methylimidazole treated PEDOT:PSS layer is smoother than that of the pristine PEDOT:PSS thin film. Improvement in the morphology, electrical and optical properties of PEDOT:PSS films makes them highly suitable for numerous applications in optoelectronic devices.  相似文献   

9.
We demonstrate flexible organic light-emitting diodes (FOLEDs) that use flexible conductive polymer electrodes patterned by negative mold transfer printing (nMTP). Because pristine poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is unsuitable for nMTP owing to problems with wettability, additives are used to improve the surface wetting properties of the polymer on the mold to successfully employ nMTP. Moreover, the additives improve the conductivity of the polymer electrode. FOLEDs fabricated with the modified PEDOT:PSS using nMTP exhibit electrical properties comparable to those of a device having an indium tin oxide (ITO) anode. These results show that the highly conductive PEDOT:PSS patterned by nMTP can be used as transparent high-resolution electrodes in low-cost ITO-free FOLEDs.  相似文献   

10.
An investigation is presented of the effect of the surface roughness of poly(3,4-ethylenedioxythiophene) (PEDOT) electrodes on the growth of pentacene and the electrical performance of PEDOT electrode bottom contact pentacene transistor. Smooth PEDOT films contained well-oriented and small sized pentacene islands whilst rough PEDOT films exhibited randomly oriented islands with non-uniformly sized islands. In addition, PEDOT electrodes provided morphological continuity at the electrode–channel interface, making the accumulation channel of the pentacene formed on the electrodes a main contributor to the contact resistance. Accordingly, the smooth PEDOT surface yielded the low contact resistance (5.7  cm), approximately half of that obtained with the rough surface.  相似文献   

11.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

12.
Nanoislands have been fabricated on the surface of conducting poly(3,4‐ethylenedioxythiophene) (PEDOT) films doped with poly(4‐styrenesulfonate) (PSS) using high‐energy (≈ 1–3 MeV) Cl2+ ion irradiation. Scanning electron microscopy and atomic force microscopy confirm the direct formation of nanoislands with diameters ranging from 50 to 300 nm and heights ranging from 40 to 120 nm. From our analysis, we propose that the formation of nanoislands might be due to micelle formation of the polymeric stabilizer poly(sodium 4‐styrenesulfonate) (PSS‐Na) surrounding the nuclei in the PEDOT/PSS via the high‐energy‐ion irradiation. We observe similar results for high‐energy‐ion irradiated polyaniline doped with PSS‐Na. On using the nanoislands as nanotip emitters of a field‐emission display, an increase in the current density of about five orders of magnitude is observed. Cyclic voltammetry of the PEDOT/PSS electrode with the nanoislands as the electrode shows enhanced capacitance compared with that of the PEDOT/PSS film that contains no nanostructure.  相似文献   

13.
Triboelectric generators (TEGs) are devices that convert mechanical energy to electrical energy through triboelectric charging of different material surfaces at periodic contact. Typically, such devices consist of two dielectric contacting layers with electrodes attached on the non-contacting sides but alternatively, one material can simultaneously serve as both a contacting and an electrode material. In this work, we report the use of poly(3,4-ethylenedioxythiophene) (PEDOT) for TEG device were PEDOT film serves as both a contacting surface to PDMS and as an electrode. Two different PEDOT films were prepared on glass substrates by vapour-phase polymerization (VPP) and VPP combined with electropolymerization method and compared as TEG electrodes. Additionally, PEDOT/poly(1,6-hexanediol-co-citric acid) (PHC) composite films were prepared by using solution casting polymerization. These methods yielded PEDOT films with different morphology, surface roughness and conductivity. Best performance was demonstrated for the PEDOT film with the lowest surface roughness (1.88 nm RMS), prepared by VPP method, which generated peak current of 0.45 mA/m2 and power density of 95 W/m2, outperforming Sn doped In2O3 electrode approximately by threefold in the same experimental setup.  相似文献   

14.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

15.
Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices.  相似文献   

16.
The thermoelectric performance of synthetic conductive polymers, poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), is explored. The effects of the dielectric solvent, dimethyl sulfoxide (DMSO), and of the ratio of PEDOT to PSS in the polymeric PEDOT/PSS thin films were studied systematically. Within the parameter range studied in this work, the variation of electrical conductivity overwhelmed the variation of the Seebeck coefficient, and the optimal power factor is basically determined by the highest electrical conductivity, because the Seebeck coefficient remains small over a wide range of DMSO concentrations and PEDOT:PSS ratios.  相似文献   

17.
We investigate the influence of annealing conditions on the physical properties of thin films of poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT/PSS). In particular, we describe how annealing temperature, the ambient gas, and choice of dopant affect the conductivity, morphology, and work function of the films. Two specific dopants are considered, sorbitol and glycerol, and broad guidelines are developed for using PEDOT/PSS as a hole‐injection electrode in polymeric light‐emitting devices, solar cells, and photodetectors.  相似文献   

18.
We report on the fabrication and characterization of inkjet-printed, all-Organic ElectroChemical Transistors (OECTs) entirely realized by a conducting polymer, namely poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT:PSS). The transistors utilized saline as the electrolyte and exhibited output characteristics typical for operation in depletion regime. The transfer characteristics could be tuned on the basis of device geometry, with the ratio between the area of the channel and the area of the gate electrode determining the transconductance. This work paves the road for the low-cost, print-on-demand fabrication of circuits for applications in bio-sensors and disposable electronics.  相似文献   

19.
The next generation of optoelectronic devices requires transparent conductive electrodes to be flexible, inexpensive and compatible with large scale manufacturing processes. We report an ultrasmooth, highly conductive and transparent composite electrode on a flexible photopolymer substrate by employing a template stripping method. A random silver nanowire (AgNW) network buried in poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film constituted the composite electrode. Besides the effectively decreased surface roughness, its sheet resistance and transmittance are comparable to those of conventional PEDOT:PSS electrode. As a result, the efficiency of the OLEDs based on the composite electrode exhibited 25% enhancement compared to the OLEDs with conventional PEDOT:PSS electrode. Moreover, the performance of the flexible OLEDs remains stable after over one hundred bending cycles.  相似文献   

20.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising alternative transparent electrode to replace conventional indium tix oxide (ITO) for flexible and stretchable electronics. For their applications in optoelectronic devices, realizing both high conductivity and transmittance for the films is of great necessity as a suitable high performance transparent electrode. Here, we demonstrate simultaneously enhanced electrical and optical properties of PEDOT:PSS films prepared on chitosan bio-substrates by using an organic surface modifier, 11-aminoundecanoic acid (11-AA). The sheet resistance of PEDOT:PSS films decreases from 1120.8 to 292.8 Ω/sq with an increase in a transmittance from 75.9 to 80.4% by 11-AA treatment on the chitosan films. The functional groups of 11-AA effectively enhance the adhesion property at the interface between the chitosan substrate and PEDOT:PSS by forming strong interfacial bondings and decrease insulating PSS from PEDOT:PSS films. The wearable heater devices and on-skin sensors based on the 11-AA-treated PEDOT:PSS on the chitosan bio-substrates are successfully fabricated, showing the excellent thermal and sensing performances. The 11-AA surface-modification approach for highly conductive PEDOT:PSS on chitosan bio-substrates presents a great potential for applications toward transparent, flexible and stretchable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号