首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ~0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ~7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.  相似文献   

2.
An approximate theory for the feedback mode of the scanning electrochemical microscope (SECM) is developed to interpret the effects of substrate shielding on an ultramicroelectrode tip during a recording of iT versus d curves (approach curves) for reversible and quasireversible kinetics at a substrate surface. The resulting expressions for the tip current, iT, show a good fit to more accurate SECM simulations as well as to the experimental response of a reversible and quasireversible reaction. SECM shielding experiments thus give an interesting new insight into SECM approach curves over electrodes at different potentials, which suggest possible applications to measuring heterogeneous kinetics for fast reactions and diffusion coefficient determination.  相似文献   

3.
The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.  相似文献   

4.
The theory of the feedback mode of scanning electrochemical microscopy is extended for probing heterogeneous electron transfer at an unbiased conductor. A steady-state SECM diffusion problem with a pair of disk ultramicroelectrodes as a tip and a substrate is solved numerically. The potential of the unbiased substrate is such that the net current flow across the substrate/solution interface is zero. For a reversible substrate reaction, the potential and the corresponding tip current depend on SECM geometries with respective to the tip radius including not only the tip-substrate distance and the substrate radius but also the thickness of the insulating sheath surrounding the tip. A larger feedback current is obtained using a probe with a thinner insulating sheath, enabling identification of a smaller unbiased substrate with a radius that is approximately as small as the tip radius. An intrinsically slow reaction at an unbiased substrate as driven by a SECM probe can be quasi-reversible. The standard rate constant of the substrate reaction can be determined from the feedback tip current when the SECM geometries are known. The numerical simulations are extended to an SECM line scan above an unbiased substrate to demonstrate a "dip" in the steady-state tip current above the substrate center. The theoretical predictions are confirmed experimentally for reversible and quasi-reversible reactions at an unbiased disk substrate using disk probes with different tip radii and outer radii.  相似文献   

5.
Combined scanning electrochemical atomic force microscopy (SECM-AFM) is a recently introduced scanned probe microscopy technique where the probe, which consists of a tip electrode and integrated cantilever, is capable of functioning as both a force sensor, for topographical imaging, and an ultramicroelectrode for electrochemical imaging. To extend the capabilities of the technique, two strategies for noncontact amperometric imaging-in conjunction with contact mode topographical imaging-have been developed for the investigation of solid-liquid interfaces. First, SECM-AFM can be used to image an area of the surface of interest, in contact mode, to deduce the topography. The feedback loop of the AFM is then disengaged and the stepper motor employed to retract the tip a specified distance from the sample, to record a current image over the same area, but with the tip held in a fixed x-y plane above the surface. Second, Lift Mode can be employed, where a line scan of topographical AFM data is first acquired in contact mode, and the line is then rescanned to record SECM current data, with the tip maintained at a constant distance from the target interface, effectively following the contours of the surface. Both approaches are exemplified with SECM feedback and substrate generation-tip collection measurements, with a 10-microm-diameter Pt disk UME serving as a model substrate. The approaches described allow electrochemical images, acquired with the tip above the surface, to be closely correlated with the underlying topography, recorded with the tip in intimate contact with the surface.  相似文献   

6.
Here we report on a generalized theory for scanning electrochemical microscopy to enable the voltammetric investigation of a heterogeneous electron-transfer (ET) reaction with arbitrary reversibility and mechanism at the macroscopic substrate. In this theory, we consider comprehensive nanoscale experimental conditions where a tip is positioned at a nanometer distance from a substrate to detect the reactant or product of a substrate reaction at any potential in the feedback or substrate generation/tip collection mode, respectively. Finite element simulation with the Marcus-Hush-Chidsey formalism predicts that a substrate reaction under the nanoscale mass transport conditions can deviate from classical Butler-Volmer behavior to enable the precise determination of the standard ET rate constant and reorganization energy for a redox couple from the resulting tip current-substrate potential voltammogram as obtained at quasi-steady state. Simulated voltammograms are generalized in the form of analytical equations to allow for reliable kinetic analysis without the prior knowledge of the rate law. Our theory also predicts that a limiting tip current can be controlled kinetically to be smaller than the diffusion-limited current when a relatively inert electrode material is investigated under the nanoscale voltammetric conditions.  相似文献   

7.
8.
This contribution represents the first comprehensive attempt to treat complex geometry configurations of the scanning electrochemical microscope (SECM) using the alternating direction implicit finite difference method (ADIFDM). Specifically, ADIFDM is used to simulate the steady-state as well as the transient (chronoamperometric) behavior of a hemispherical ultramicroelectrode (UME) tip of the SECM. The feedback effect in this configuration is less pronounced as compared with a disk-shaped UME system. The differences between the two systems are discussed. Analytical approximations for the steady-state behavior and for characteristic features of the transient behavior are suggested. Finally, experimental feedback currents measured above a conductor and an insulator are in excellent agreement with the theory.  相似文献   

9.
The fabrication and characterization of novel micropipet probes for use in scanning electrochemical microscopy (SECM) are described. These can be used to dispense small (pL) amounts of a solution while monitoring the electrochemical response at a substrate and at a ring electrode tip on the micropipet probe. The probes were constructed by insulating gold-coated borosilicate micropipets with electrophoretic paint and exposing a ring electrode at the tip by heat treatment. Characterization of the probes was performed using scanning electron microscopy, cyclic voltammetry, and SECM approach curve experiments. Routine construction of tips with diameters of the order of 3 microm was possible using this technique. The probes exhibited stable steady-state currents and positive and negative feedback approach curves that agreed with those predicted by theory. Demonstrative SECM imaging experiments were performed using a picodispenser to continuously dispense an electroactive solution (ferrocenemethanol) to the SECM cell while the probe was located within a few micrometers of a Pt substrate surface. Oxidation of the dispensed electroactive solution was performed at the substrate, and feedback currents were measured at the probe tip by holding the gold ring at a reducing potential. This mode of tip-dispensing SECM was used to obtain images of a platinum substrate electrode while monitoring both the substrate current and the feedback current at the probe.  相似文献   

10.
A scanning electrochemical microscopy (SECM) methodology for localized quantitative kinetic studies of electrode reactions based on the tip generation-substrate collection (TG-SC) operation mode is presented. This approach does not use the mediator feedback required in typical kinetic SECM experiments. The reactant is galvanostatically electrogenerated on a tip placed in proximity to the substrate. It diffuses through the tip-substrate gap and undergoes the reaction of interest on the substrate surface. The substrate current is monitored with time until it reaches an apparent steady-state value. The process was digitally simulated using an explicit finite difference method, for an irreversible first-order electrode reaction at the substrate. Transient responses, steady-state polarization curves, and TG-SC approach curves can be used to obtain substrate kinetics. The effects of the experimental parameters were analyzed. The possibility of easily changing the experimental conditions with the SECM is an attractive approach to obtain independent evidence that can be used for a strict test of reaction mechanisms. The technique was applied for a preliminary simplified kinetic examination of the oxygen reduction reaction in phosphoric acid.  相似文献   

11.
LeSuer RJ  Fan FR  Bard AJ 《Analytical chemistry》2004,76(23):6894-6901
The bipolar conductance, BICON, technique for the measurement of solution resistance, based on the application of microsecond current pulses, as originally described by Enke and co-workers for measurements with conventional electrodes, was extended for use with ultramicroelectrodes, with a focus on its application in scanning electrochemical microscopy (SECM). When the plateau time used to make the measurement lies within the BICON conditions, the solution conductance can be obtained directly from the output without the need for calibration curves. However, decreasing the size of the ultramicroelectrode decreases the range of values that satisfy these conditions, and one must resort to calibration curves to obtain solution conductance from the measured current, which was nevertheless found to be proportional to electrolyte concentration with electrodes as small as 5 mum in diameter. BICON/SECM approach curves over insulating substrates followed SECM negative feedback theory and approach curves in the presence of low (micromolar) or no added electrolyte are possible once the background conductivity is taken into account. Approach curves to a conducting substrate at open circuit potential are influenced by the solution time constant (solution resistance at the electrode tip x electrode double layer capacitance), which is a function of the tip/substrate distance, as well as the substrate size.  相似文献   

12.
Scanning electrochemical microscopy (SECM) tips with rounded glass insulation around the metal wire (radius a = 5 μm) were fabricated (apparent RG < 1.1, where RG is the ratio of the radius of the insulation sheath divided by the electrode radius), and their SECM feedback approach curves were studied in solutions of tris(2,2'-bipyridine)ruthenium(2+) (Rubpy) in acetonitrile and ferrocenemethanol in water with a platinum disk as the substrate electrode (radius a(s) = 1 mm). Considerable enhancement of the normalized feedback current, I(T)(L) = i(T)/i(T,∞), where L = d/a and d is the distance traveled by the SECM tip, was observed in both systems (e.g., I(T)(L) = 15 in organic solutions and I(T)(L) = 30 in aqueous solutions) with good electrode alignment. This shows that tip-to-substrate gaps of ca. d = 110 nm can be achieved. To account for any deviations from the usual disk UME behavior and currents caused by possible changes in the tip electrode geometry, simulations of the feedback response were performed for a 2D axisymmetric environment. All simulated results match in a point-to-point comparison with experimental values (average relative standard deviation (RSD) = 0.01 ± 0.005).  相似文献   

13.
Scanning electrochemical microscopy (SECM) has been employed in the feedback mode to assess the electrochemical behavior of two-dimensional networks of single-walled carbon nanotubes (SWNTs). It is shown that, even though the network comprises both metallic and semiconducting SWNTs, at high density (well above the percolation threshold for metallic SWNTs) and with approximately millimolar concentrations of redox species the network behaves as a thin metallic film, irrespective of the formal potential of the redox couple. This result is particularly striking since the fractional surface coverage of SWNTs is only approximately 1% and SECM delivers high mass transport rates to the network. Finite element simulations demonstrate that under these conditions diffusional overlap between neighboring SWNTs is significant so that planar diffusion prevails in the gap between the SECM tip and the underlying SWNT substrate. The SECM feedback response diminishes at higher concentrations of the redox species. However, wet gate measurements show that at the solution potentials of interest the conductivity is sufficiently high that lateral conductivity is not expected to be limiting. This suggests that reaction kinetics may be a limiting factor, especially since the low surface coverage of the SWNT network results in large fluxes to the SWNTs, which are characterized by a low density of electronic states. For electroanalytical purposes, significantly, two-dimensional SWNT networks can be considered as metallic films for typical millimolar concentrations employed in amperometry and voltammetry. Moreover, SWNT networks can be inexpensively and easily formed over large scales, opening up the possibility of further electroanalytical applications.  相似文献   

14.
Fast-scan cyclic voltammetry at scan rates between 5 and 1000 V s(-1) was performed at the tip of a scanning electrochemical microscope immersed in a solution of redox mediator. The effect of conducting and insulating substrates on the voltammetric signal was investigated as a function of scan rate and tip-substrate distance. It was found that diffusional interactions between the tip and the substrate are greatest at lower scan rates and on the reverse sweep of the voltammogram. At the fastest scan rates used, the tip could be brought to with 1 microm of the substrate without appreciable perturbation of the voltammogram. By selecting scan rates and tip-substrate distances such that feedback effects were negligible, it was possible to image the diffusion layer of a 10 microm Pt substrate electrode. With the tip placed 1 microm above a biological cell, tip-substrate diffusional interactions were greatly diminished at a scan rate of 100 V s(-1) and absent at a scan rate of 1000 V s(-1). These results suggest conditions can be selected that allow chemical imaging of substrates without the feedback interactions typically encountered in scanning electrochemical microscopy.  相似文献   

15.
Local feedback mode is introduced as a novel operation mode of scanning electrochemical microscopy (SECM) for electrochemical characterization of a single one-dimensional (1D) nanostructure, for example, a wire, rod, band, and tube with 1-100-nm width and micrometer to centimeter length. To demonstrate the principle, SECM feedback effects under diffusion limitation were studied theoretically and experimentally with a disk probe brought near a semi-infinitely long band electrode as a geometrical model for a conductive 1D nanostructure. As the band becomes narrower than the disk diameter, the feedback mechanism for tip current enhancement is predicted to change from standard positive feedback mode, to positive local feedback mode, and then to negative local feedback mode. The negative local feedback effect is the only feedback effect that allows observation of a 1D nanostructure without serious limitations due to small lateral dimension, available tip size, or finite electron-transfer rate. In line-scan and approach-curve experiments, an unbiased Pt band electrode with 100-nm width and 2.6-cm length was detectable in negative local feedback mode, even using a 25-microm-diameter disk Pt electrode. Using a 2-microm-diameter probe, both well-defined and defected sites were observed in SECM imaging on the basis of local electrochemical activity of the nanoband electrode. Noncontact and spatially resolved measurement is an advantage of this novel SECM approach over standard electrochemical approaches using electrodes based on 1D nanostructure.  相似文献   

16.
Holt KB  Hu J  Foord JS 《Analytical chemistry》2007,79(6):2556-2561
Boron-doped diamond (BDD) ultramicroelectrode (UME) tips were fabricated by the growth of BDD films by chemical vapor deposition onto sharpened tungsten wires. Both nanocrystalline and microcrystalline forms of diamond coatings were examined. The diamond-coated wires were selectively insulated with nail varnish, electrophoretic paint, or fast-setting epoxy to form UME tips of critical dimensions of 1-25 microm. The geometry of the exposed electrode area was disk or hemispherical in most cases. Cyclic voltammetry and chronoamperometry were used to assess exposed electrode area and integrity of the insulation. BDD UMEs were used to obtain SECM approach curves to an insulating and a conducting substrate, which were fitted to the theory appropriate for the observed tip geometry. The tips were used to obtain SECM images of immobilized respiring E. coli, illustrating the suitability of BDD UMEs for electrochemical imaging in biological media.  相似文献   

17.
Fast-scan cyclic voltammetry (FSCV) is applied to the tip of a scanning electrochemical microscope (SECM) for imaging the distribution of chemical species near a substrate. This approach was used to image the diffusion layer of both a large substrate electrode (3-mm-diameter glassy carbon) and a microelectrode substrate (10-microm-diameter Pt). Additionally, oxygen depletion near living cells was measured and correlated to respiratory activity. Finally, oxygen and hydrogen peroxide were simultaneously detected during the oxidative burst of a zymosan-stimulated macrophage cell. These results demonstrate the utility of FSCV-SECM for chemical imaging when conditions are chosen such that feedback interactions with the substrate are minimal.  相似文献   

18.
In this paper, we present a technique to rapidly and directly examine ultramicroelectrodes (UMEs) by white light vertical scanning interferometry (VSI). This technique is especially useful in obtaining topographic information with nanometer resolution without destruction or modification of the UME and in recognizing tips where the metal is recessed below the insulating sheath. Two gold UMEs, one with a metal radius a = 25 μm and relative insulating sheath radius RG = 2 and the other with a = 5 μm and RG = ~1.5, were examined, and the average depth of the gold recessions was determined to be 1.15 μm and 910 nm, respectively. Electrodeposition of gold was performed to fill the recessed hole, and the depth was reduced to ~200 nm. With the electrodeposited gold electrode and a conventional microelectrode (a = 25 μm) as a tip and substrate, respectively, a tip/substrate distance, d, of 600 nm was achieved allowing scanning electrochemical microscopy (SECM) in positive feedback mode at a close distance, which is useful for measuring fast kinetics.  相似文献   

19.
Sun P  Mirkin MV 《Analytical chemistry》2006,78(18):6526-6534
The kinetics of several fast heterogeneous electron-transfer reactions were investigated by steady-state voltammetry at nanoelectrodes and scanning electrochemical microscopy (SECM). The disk-type, polished Pt nanoelectrodes (3.7-400-nm radius) were characterized by a combination of voltammetry, scanning electron microscopy, and SECM. A number of experimental curves were obtained at the same nanoelectrode to attain the accuracy and reproducibility similar to those reported previously for micrometer-sized probes. A new analytical approximation was developed and used for analysis of steady-state tip voltammograms. The self-consistent kinetic parameter values with the uncertainty margin of approximately 10% were obtained for electrodes of different radii and for a wide range of the SECM tip/substrate separation distances. The determined standard rate constants are compared to those previously measured at the electrodes of different dimensions, and the correlation between the heterogeneous and self-exchange rate constants is discussed.  相似文献   

20.
Hg/Pt hemispherical ultramicroelectrodes (UMEs) (25-microm diameter) were prepared either by electrodeposition from a mercuric ion solution or by simple contact of the Pt disk to a hanging mercury drop electrode. The two methods produced equivalent tips. Optical inspection and electrochemical characterization of these Hg tips with methyl viologen, cobalt sepulchrate trichloride, and hexamineruthenium(III) chloride confirm the hemispherical nature of the UME. The scanning electrochemical microscopy approach curves for all three redox couples over a conductive substrate fit theoretical plots for hemispherical electrodes. The numerical solution of the diffusion equations for substrate generation-tip collection (SG-TC) transients for a finite Pt disk and Hg/Pt hemispherical UME are reported and compared to experimental results. A diffusion layer approximation is presented, and diffusion coefficients are extracted from the simulation. The SG-TC results reveal the enhanced sensitivity of hemispherical UME to radial diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号