首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was recently demonstrated that peptide bond formation can occur using an Escherichia coli naked 23S ribosomal RNA without any of the ribosomal proteins. Here, the six domains of the 23S ribosomal RNA were individually synthesized and shown to be capable, when complexed together, of stimulating the reaction. Omission and addition experiments indicated that the activity could be reconstituted solely by domain V at a concentration 10 times higher than that of the intact 23S ribosomal RNA, whereas domain VI could enhance the activity in trans. These findings suggest that fragments of an RNA molecule have the ability to associate into a functional whole.  相似文献   

2.
3.
The technique of homograft aortic root replacement in our practice has evolved as our experience has increased. This technique is described and illustrated. In most cases, aortic annuli are reduced by using various suture techniques to match the homograft. This allows for a successful implantation of a normal-sized aortic homograft root in a patient with a diseased aortic valve and annular dilatation.  相似文献   

4.
5.
The codon-anticodon interaction on the ribosome occurs in the A site of the 30 S subunit. Aminoglycoside antibiotics, which bind to ribosomal RNA in the A site, cause misreading of the genetic code and inhibit translocation. Biochemical studies and nuclear magnetic resonance spectroscopy were used to characterize the interaction between the aminoglycoside antibiotic paromomycin and a small model oligonucleotide that mimics the A site of Escherichia coli 16 S ribosomal RNA. Upon chemical modification, the RNA oligonucleotide exhibits an accessibility pattern similar to that of 16 S rRNA in the 30 S subunit. In addition, the oligonucleotide binds specifically aminoglycoside antibiotics. The antibiotic binding site forms an asymmetric internal loop, caused by non-canonical base-pairs. Nucleotides that are important for binding of paromomycin were identified by performing quantitative footprinting on oligonucleotide sequence variants and include the C1407.G1494 base-pair, and A.U base-pair at positions 1410/1490, and nucleotides A1408, A1493 and U1495. The asymmetry of the internal loop, which requires the presence of a nucleotide in position 1492, is also crucial for antibiotic binding. Introduction into the oligonucleotide of base changes that are known to confer aminoglycoside resistance in 16 S rRNA result in weaker binding of paromomycin to the oligonucleotide. Oligonucleotides homologous to eukaryotic rRNA sequences show reduced binding of paromomycin, suggesting a physical origin for the species-specific action of aminoglycosides.  相似文献   

6.
We investigated interaction of an RNA domain covering the target site of alpha-sarcin and ricin (sarcin/ricin domain) of Escherichia coli 23 S rRNA with ribosomal proteins. RNA fragments comprising residues 2630-2788 (Tox-1) and residues 2640-2774 (Tox-2) of 23 S rRNA were transcribed in vitro and used to analyze the binding proteins by gel shift and filter binding. Protein L6 bound to both Tox-1 (Kd: 0.31 microM) and Tox-2 (Kd: 0.18 microM), and L3 bound only to Tox-1 (Kd: 0.069 microM) in a solution containing 10 mM MgCl2 and 175 mM KCl at 0 degreesC. Footprinting studies were performed using the chemical probe dimethyl sulfate on full-length 23 S rRNA. Binding of L6 protected a single base, A-2757, and strongly enhanced reactivity of C-2752. A direct role of A-2757 in the L6 binding was verified by site-directed mutagenesis; replacements of A-2757 with G and C impaired the L6 binding. On the other hand, binding of L3 protected A-2632, A-2634, A-2635, A-2675, A-2726, A-2733, A-2749, and A-2750. Interestingly, binding of L6 and L3 together protected additional bases A-2657, A-2662, C-2666, and C-2667 in the sarcin/ricin loop, in addition to A-2740, A-2741, A-2748, A-2753, A-2764, A-2765, and A-2766 in the other stem-loop. This appears to be due to cooperative interaction of L3 and L6 with the RNA. The results are discussed with respect to conformational modulation of the sarcin/ricin domain by the protein binding.  相似文献   

7.
The adenosinetriphosphatase (ATPase) activity of the Escherichia coli DEAD protein DbpA is unusual in that it is specifically stimulated by 23S ribosomal RNA (rRNA). A coupled spectroscopic ATPase assay was used to investigate the interaction of DbpA with RNA and ATP. A 153-base fragment of domain V of 23S rRNA is kinetically identical to intact, native rRNA in activating DbpA: kcat = 600 min-1, Kapp(RNA) = 10 nM, and Km(ATP) = 120 microM. The ATPase turnover in the absence of RNA is 0.25 min-1. Fragments of 23S rRNA lacking this site (nucleotides 2454-2606) are essentially inactive, as are other RNAs such as poly(A) and tRNA. The relative RNA specificity of DbpA ranges from 10(3) to 10(6) [kmax/Kapp(RNA)]. The interaction with this small RNA fragment was further investigated with regard to stoichiometry, pH, salt and temperature. DbpA is not activated by E. coli ribosomes, nor by large subunits, while denatured ribosomes stimulate full ATPase activity. Taken together with the tight, site-specific binding to naked, unmodified 23S rRNA, this suggests a role for DbpA in ribosome biogenesis rather than translation.  相似文献   

8.
9.
The sarcin/ricin domain (SRD) in Escherichia coli 23 S rRNA forms a part of the site for the association of the elongation factors with the ribosome and hence is critical for the binding of aminoacyl-tRNA and for translocation. The domain is also the site of action of the eponymous toxins which catalyze covalent modification of single nucleotides that inactivate the ribosome. The conformation of the conserved guanosine at position 2655 is an especially prominent feature of the structure of the SRD: the nucleotide is bulged out of a helix and forms a base-triple with A2665 and U2656. G2655 in 23 S rRNA is protected from chemical modification when the elongation factors, EF-Tu and EF-G, are bound to ribosomes and the analog of G2655 in oligoribonucleotides is critical for recognition by the toxin sarcin and by EF-G. The contribution of G2655 to the function of the ribosome has been evaluated by constructing mutations in the nucleotide and determining the phenotype. Constitutive expression of a plasmid-encoded rrnB operon with a deletion of, or transversions in, G2655 is lethal to E. coli cells, whereas a defect in the growth of cells with a G2655A transition is observed only in competition with wild-type cells. The sedimentation profiles of ribosomes with mutations in G2655 are altered; most markedly by deletion or transversion of the nucleotide, less severely by transition to adenosine. Mutations of G2655 confer resistance to sarcin on ribosomes. Ribosomes with G2655Delta, G2655C, or G2655U mutations in 23 S rRNA are not active in protein synthesis, whereas those with the G2655A transition mutation suffer decreased activity.  相似文献   

10.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

11.
We have examined the 3'-terminal sequence of the "small" structural ribosomal RNA ("13S") of hamster cell mitochondria, using a procedure involving [3H]isoniazide labeling of samples subjected to sequential periodate oxidation and beta-elimination. The terminus was found to be PyUAUUAOH, which is similar, but not identical, to the corresponding terminus of eukaryotic cytoplasmic 18S rRNA.  相似文献   

12.
13.
To explore the possibility that insulin analogues designed to have restricted access to peripheral tissues may display relative hepatoselectivity in vivo, Nalphabeta1-thyroxyl-insulin (B1-T4-Ins) and Nalphabeta1-thyroxyl-aminohexanoyl insulin (B1-T4-AHA-Ins) were synthesized. These insulin analogues bind thyroid hormone binding proteins to form high molecular weight complexes. Effects of intravenous infusions of B1-T4-Ins; B1-T4-AHA-Ins; combined thyroxine binding globulin (TBG) and B1-T4-Ins and combined TBG and B1-T4-AHA-Ins were compared with those of insulin infusion in hyperinsulinaemic euglycaemic clamp protocols in anaesthetized beagles (n=4 and n=3 for combined TBG infusions). Glucose turnover rates were measured using D-[3-3H]glucose infusion. With all 5 protocols the rate of glucose disappearance (Rd) was increased and the rate of endogenous glucose production (Ra) decreased from basal level 13.53+/-0.60 micromol kg(-1) min(-1)(p<0.05). Insulin-like activity for Ra and Rd was calculated as the area between the basal values of each variable and the subsequent values plotted graphically against time (AUC). For insulin, B1-T4-Ins, B1-T4-AHA-Ins, combined infusions of TBG+B1-T4-Ins, and TBG+B1-T4-AHA-Ins, respectively, AUC for Rd values were 6.30+/-0.69, 3.35+/-0.53, 4.40+/-0.64, 2.82+/-0.40 and 3.46+/-0.95 (mmol kg(-1)), all analogue infusions being different from insulin (p<0.05). AUC for Rd was further reduced by addition of TBG to B1-T4-AHA-Ins (p<0.05). In contrast the effect of all analogues on AUC for Ra was similar to that of insulin. These observations are compatible with the suggestion that insulin analogues which bind to thyroid hormone binding proteins retain access to hepatic insulin receptors which primarily control Ra. The reduced peripheral insulin-like effect (Rd) could be due to reduced transcapillary access to peripheral insulin receptor sites.  相似文献   

14.
The relationship of ribosomal RNA (rRNA) synthesis to nucleolar ultrastructure was studied in partial nucleolar mutants of Xenopus laevis. These mutations are the result of a partial deletion of rRNA genes and therefore alow studies on nucleolar structure and function without using drugs that inhibit rRNA synthesis. Ultrastructural studies demonstrated that normal embryos have reticulated nucleoli that are composed of a loose meshwork of granules and fibrils and a typical nucleolonema. In contrast, partial nucleolar mutants in which rRNA synthesis is reduced to less than 50% of the normal rate have compact nucleoli and nucleolus-like bodies. The compace nucleoli contain granules and fibrils, but they are segregated into distinct regions, and a nucleolonema is never seen. Since other species of RNA are synthesized normally by partial nucleolar mutants, these results demonstrate that nucleolar segragation is related specifically to a reduction in rRNA synthesis. The nucleolus-like bodies are composed mainly of fibrils,and the number of such bodies are composed mainly of fibrils, and the number of such bodies present in the different nucleolar mutants is inversely related to the relative rate of rRNA synthesis. Although the partial nucleolar organizers produce segregated nucleoli in these mutants, they organize morphologically normal, but smaller, nucleoli in heterozygous embryos. Alternative explanations to account for these results are discussed.  相似文献   

15.
Directed hydroxyl radical probing of 16S ribosomal RNA from Fe(II) tethered to specific sites within the RNA was used to determine RNA-RNA proximities in 70S ribosomes. We have transcribed 16S ribosomal RNA in vitro as two separate fragments, covalently attached an Fe(II) probe to a 5'-guanosine-alpha-phosphorothioate at the junction between the two fragments, and reconstituted 30S subunits with the two separate pieces of RNA and the small subunit proteins. Reconstituted 30S subunits capable of association with 50S subunits were selected by isolation of 70S ribosomes. Hydroxyl radicals, generated in situ from the tethered Fe(II), cleaved sites in the 16S rRNA backbone that were close in three-dimensional space to the Fe(II), and a primer extension was used to identify these sites of cleavage. Two sets of 16S ribosomal RNA fragments, 1-360/361-1542 and 1-448/449-1542, were reconstituted into active 30S subunits. Fe(II) tethered to position 361 results in cleavage of 16S rRNA around nucleotides 34, 160, 497, 512, 520, 537, 552, and 615, as well as around positions 1410, 1422, 1480, and 1490. Fe(II) tethered to position 449 induces cleavage around nucleotide 488 and around positions 42 and 617. Fe(II) tethered to the 5' end of 16S rRNA induces cleavage of the rRNA around nucleotides 5, 601, 615, and 642. These results provide constraints for the positioning of these regions of 16S rRNA, for which there has previously been only limited structural information, within the 30S subunit.  相似文献   

16.
23S rRNA from Escherichia coli was cleaved at single internucleotide bonds using ribonuclease H in the presence of appropriate chimeric oligonucleotides; the individual cleavage sites were between residues 384 and 385, 867 and 868, 1045 and 1046, and 2510 and 2511, with an additional fortuitous cleavage at positions 1117 and 1118. In each case, the 3' terminus of the 5' fragment was ligated to radioactively labeled 4-thiouridine 5'-,3'-biphosphate ("psUp"), and the cleaved 23S rRNA carrying this label was reconstituted into 50S subunits. The 50S subunits were able to associate normally with 30S subunits to form 70S ribosomes. Intra-RNA crosslinks from the 4-thiouridine residues were induced by irradiation at 350 nm, and the crosslink sites within the 23S rRNA were analyzed. The rRNA molecules carrying psUp at positions 867 and 1117 showed crosslinks to nearby positions on the opposite strand of the same double helix where the cleavage was located, and no crosslinking was detected from position 2510. In contrast, the rRNA carrying psUp at position 384 showed crosslinking to nt 420 (and sometimes also to 416 and 425) in the neighboring helix in 23S rRNA, and the rRNA with psUp at position 1045 gave a crosslink to residue 993. The latter crosslink demonstrates that the long helix 41-42 of the 23S rRNA (which carries the region associated with GTPase activity) must double back on itself, forming a "U-turn" in the ribosome. This result is discussed in terms of the topography of the GTPase region in the 50S subunit, and its relation to the locations of the 5S rRNA and the peptidyl transferase center.  相似文献   

17.
Evidence is presented for the participation of the P loop (nucleotides G2250-C2254) of 23 S rRNA in establishing the tertiary structure of the peptidyl transferase center. Single base substitutions were introduced into the P loop, which participates in peptide bond formation through direct interaction with the CCA end of P site-bound tRNA. These mutations altered the pattern of reactivity of RNA to chemical probes in a structural subdomain encompassing the P loop and extending roughly from G2238 to A2433. Most of the effects on chemical modification in the P loop subdomain occurred near sites of tertiary interactions inferred from comparative sequence analysis, indicating that these mutations perturb the tertiary structure of this region of RNA. Changes in chemical modification were also seen in a subdomain composed of the 2530 loop (nucleotides G2529-A2534) and the A loop (nucleotides U2552-C2556), the latter a site of interaction with the CCA end of A site-bound tRNA. Mutations in the P loop induced effects on chemical modification that were commensurate with the severity of their characterized functional defects in peptide bond formation, tRNA binding and translational fidelity. These results indicate that, in addition to its direct role in peptide bond formation, the P loop contributes to the tertiary structure of the peptidyl transferase center and influences the conformation of both the acceptor and peptidyl tRNA binding sites.  相似文献   

18.
Numerous studies have linked the overexpression of the Mr 37,000 laminin receptor precursor (37-LRP) to tumor cell growth and proliferation. The role of this protein in carcinogenesis is generally considered in the context of its putative role as a precursor for the Mr 67,000 high-affinity laminin receptor. Recent studies have shown that 37-LRP, also termed p40, is a component of the small ribosomal subunit indicating that it may be a multifunctional protein. The p40/37-LRP protein is highly conserved phylogenetically, and closely related proteins have been identified in species as evolutionarily distant as humans and the yeast, Saccharomyces cerevisiae. Yeast homologues of p40/37-LRP are encoded by a duplicated pair of genes, RPS0A and RPS0B. The Rps0 proteins are essential components of the 40S ribosomal subunit. Previous results have shown that cells disrupted in either of the RPS0 genes have a reduction in growth rate and reduced amounts of 40S ribosomal subunits relative to wild-type cells. Here, we show that the Rps0 proteins are required for the processing of the 20S rRNA-precursor to mature 18S rRNA, a late step in the maturation of 40S ribosomal subunits. Immature subunits that are depleted of Rps0 protein that contain the 20S rRNA precursor are preferentially excluded from polysomes, which indicates that their activity in protein synthesis is dramatically reduced relative to mature 40S ribosomal subunits. These data demonstrate that the assembly of Rps0 proteins into immature 40S subunits and the subsequent processing of 20S rRNA represent critical steps in defining the translational capacity of yeast cells. If the function of these yeast proteins is representative of other members of the p40/37-LRP family of proteins, then the role of these proteins as key components of the protein synthetic machinery should also be considered as a basis for the linkage between the their overexpression and tumor cell growth and proliferation.  相似文献   

19.
The aim of this study was to evaluate the clinical efficacy, mechanical stability, and safety of the Simon nitinol inferior vena cava filter (SNF). The SNF was inserted in 114 consecutive patients at two institutions for prophylaxis of pulmonary embolism (PE). Clinical follow-up data were obtained retrospectively on all patients, and 38 patients underwent a dedicated radiologic follow-up protocol consisting of abdominal radiography, Doppler sonography, and CT. There was no immediate complication following filter insertion. Fifty patients died, on average, 5.6 (1-23) months after filter insertion, and 64 patients were alive, on average, 27 (3-62) months after filter insertion. Recurrent pulmonary embolism was documented in 5 patients (4.4 %) but originated distal to the filter in 1 patient. Deep venous thrombosis (DVT) was documented in 5.3 %, thrombosis at the access site in 3.5 %, and thrombosis of the inferior vena cava in 3.5 %. The rate of thromboembolic complications was similar in patients who did receive long-term anticoagulation and in those who did not. Radiologic follow-up showed no filter migration after, on average, 32 (5-62) months. A CT examination showed that struts of the SNF had penetrated the vena cava in 95 %, and were in contact with adjacent organs in 76 %; however, there were no clinical symptoms attributable to the filter. Filters were in an eccentric position in 63 % and partial filter disruption was found in 16 %; however, this did not affect filter function. The rate of recurrent pulmonary embolism after insertion of the SNF is 2.4 % per patient per year. Regardless of long-term anticoagulation, the rate of caval thrombosis is acceptably low. Except for occasional access-site thrombosis, no other filter-related morbidity was observed.  相似文献   

20.
The thiostrepton-resistance gene encoding the 23S rRNA A1067 methyltransferase from Streptomyces azureus has been overexpressed in Escherichia coli using a T7-RNA-polymerase-dependent expression vector. The protein was efficiently expressed at levels up to 20% of total soluble protein and purified to near homogeneity. Kinetic parameters for S-adenosyl-L-methionine (Km = 0.1 mM) and an RNA fragment containing nucleotides 1029-1122 of the 23S ribosomal RNA from E. coli (Km = 0.001 mM) were determined. S-Adenosyl-L-homocysteine showed competitive product inhibition (Ki = 0.013 mM). Binding of either thiostrepton or protein L11 inhibited methylation. RNA sequence variants of the RNA fragment with mutations in nucleotides 1051-1108 were tested as substrates for the methylase. The experimental data indicate that methylation is dependent on the secondary structure of the hairpin including nucleotide A1067 and the exact sequence U(1066)-A(1067)-G(1068)-A(1069)-A(1070) of the single strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号