首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this paper is to study the thermal performance of latent cool thermal energy storage system using packed bed containing spherical capsules filled with phase change material during charging and discharging process. According to the energy balance of the phase change material (PCM) and heat transfer fluid (HTF), a mathematical model of packed bed is conducted. n-tetradecane is taken as PCM and aqueous ethylene glycol solution of 40% volumetric concentration is considered as HTF. The temperatures of the PCM and HTF, solid and melt fraction and cool stored and released rate with time are simulated. The effects of the inlet temperature and flow rate of HTF, porosity of packed bed and diameter of capsules on the melting time, solidification time, cool stored and released rate during charging and discharging process are also discussed.  相似文献   

2.
Thermal energy storage improves the load stability and efficiency of solar thermal power plants by reducing fluctuations and intermittency inherent to solar radiation. This paper presents a numerical study on the transient response of packed bed latent heat thermal energy storage system in removing fluctuations in the heat transfer fluid (HTF) temperature during the charging and discharging period. The packed bed consisting of spherical shaped encapsulated phase change materials (PCMs) is integrated in an organic Rankine cycle-based solar thermal power plant for electricity generation. A comprehensive numerical model is developed using flow equations for HTF and two-temperature non-equilibrium energy equation for heat transfer, coupled with enthalpy method to account for phase change in PCM. Systematic parametric studies are performed to understand the effect of mass flow rate, inlet charging system, storage system dimension and encapsulation of the shell diameter on the dynamic behaviour of the storage system. The overall effectiveness and transient temperature difference in HTF temperature in a cycle are computed for different geometrical and operational parameters to evaluate the system performance. It is found that the ability of the latent heat thermal energy storage system to store and release energy is significantly improved by increasing mass flow rate and inlet charging temperature. The transient variation in the HTF temperature can be effectively reduced by decreasing porosity.  相似文献   

3.
Due to the complexity of the fluid flow and heat transfer in packed bed latent thermal energy storage (LTES) systems, many hypotheses were introduced into the previous packed bed models, which consequently influenced the accuracy and authenticity of the numerical calculation. An effective packed bed model was therefore developed, which could investigate the flow field as the fluid flows through the voids of the phase change material (PCM), and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated that random packing is more favorable for heat storage and retrieval as compared to special packing; both the material and the thickness of the encapsulation have the apparent effects on the heat transfer performance of the LTES bed.  相似文献   

4.
This paper is aimed at analyzing the behavior of a packed bed latent heat thermal energy storage system. The packed bed is composed of spherical capsules filled with paraffin wax as PCM usable with a solar water heating system. The model developed in this study uses the fundamental equations similar to those of Schumann, except that the phase change phenomena of PCM inside the capsules are analyzed by using enthalpy method. The equations are numerically solved, and the results obtained are used for the thermal performance analysis of both charging and discharging processes. The effects of the inlet heat transfer fluid temperature (Stefan number), mass flow rate and phase change temperature range on the thermal performance of the capsules of various radii have been investigated. The results indicate that for the proper modeling of performance of the system the phase change temperature range of the PCM must be accurately known, and should be taken into account.  相似文献   

5.
The dynamic characteristics of solar heat storage system with spherical capsules packed bed during discharging process are studied. According to the energy balance of solar heat storage system, the dynamic discharging processes model of packed bed with spherical capsules is presented. Paraffin is taken as phase change material (PCM) and water is used as heat transfer fluid (HTF). The temperatures of PCM and HTF, solid fraction and heat released rate are simulated. The effects of inlet temperature of HTF, flow rate of HTF and porosity of packed bed on the time for discharging and heat released rate are also discussed. The following conclusion can be drawn: (1) the heat released rate is very high and decreases rapidly with time during the liquid cooling stage, it is stable at the solidification cooling stage, then it decreases to zero at the solid cooling stage. (2) The time for complete solidification decreases when the HTF flow rate increases, but the effect is not so obvious when the HTF flow rate is higher than 13 kg/min; (3) compared to the HTF inlet temperature and flow rate, the influence of porosity of packed bed on the time for complete solidification is not so significant.  相似文献   

6.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

7.
We propose a method for optimizing the net economic income for thermal energy storage in a cylindrical column packed with solid spheres. The economic value of stored heat is maximized relative to equipment and operating costs for air-based solar energy storage systems packed with either rock or steel spheres. Variables optimized separately are bed length and diameter, air flow rate, spherical particle diameter and collection time. Simultaneous optimization of a subset of these variables is illustrated. The mathematical model for the transient temperature profile in the bed includes intraparticle heat conduction, axial dispersion and heat losses to the surroundings, as described in earlier papers.  相似文献   

8.
徐阳  岳晨  高鹏举 《太阳能学报》2022,43(12):531-539
针对给定太阳日辐射曲线,研究集成蓄热单元的太阳光热系统的整体能量的动态转化特性及关键参数影响规律。结果表明:填料床总储热量与传热流体进口流速呈非线性变化,当传热流体进口流速 uf =0.006 m/s时,填料床总储热量最大;在给定填料总容量和uf =0.006 m/s的条件下,填料床高径比为5的填料床具有更高的储热能力;在该计算条件下,uf =0.006 m/s、填料床高径比为5及填料量相对值为1时,太阳光热能实现最大程度上的转化和储存。  相似文献   

9.
The cylindrical latent heat storage tanks considered here are part of a domestic heating system. In this study, the performances of such energy storage tanks are optimized theoretically. Two different models describing the diurnal transient behaviour of the phase change unit were used. The first is suited to tanks where the phase change material (PCM) is packed in cylinders and the heat transfer fluid (HTF) flows parallel to it (mode 1). The second is suited to tanks where pipes containing the fluid are embedded in the PCM (mode 2). The problem (treated as two-dimensional) is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. A series of numerical tests are then undertaken to assess the effects of various PCMs, cylinder radii, pipe radii, total PCM volume in the tank, mass flow rates of fluid, and inlet temperatures of the HTF on the storing time. In addition, optimal geometric design of the store depending on these parameters and PCMs is presented.  相似文献   

10.
11.
A.E. Saez  B.J. McCoy 《Solar Energy》1982,29(3):201-206
A mathematical model for simulating the dynamic temperature response of a packed column to an arbitrary time-dependent inlet air temperature is developed. The model includes axial thermal dispersion as well as intra-particle conduction, features that have usually been neglected but can be important in solar energy applications. Solutions, presented in terms of moments of the temperature response to an impulse of heat at the inlet, can be evaluated by simple numerical quadrature. Results of the model compare favorably with experimental data found in the literature. The model is used to optimize heat storage in a rock bin system subject to a realistic transient inlet temperature.  相似文献   

12.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
In concentrating solar power (CSP) plant, a novel method involving the use of thermocline can be employed to augment the capability of the thermal energy storage system (TES). The rate of thermocline degradation can be reduced by packing encapsulated phase change material (PCM) in the TES. The thermal performance of the packed bed latent heat thermal energy storage system (PBTES) can be further enhanced by employing different diameters of PCM capsules arranged in multiple layers. In this paper, the thermal and exergetic performance of single-layered and two-layered PBTES is evaluated for varying mass flow rate, PCM capsule diameter and bed height of larger PCM capsules using a dynamic model based on simplified energy balance equations for PCM and heat transfer fluid (HTF). The single-layered PBTES has a lower TES latent charging rate than the two-layered PBTES. The charging efficiency and charging time of two-layered PBTES are increased by 15.85% and 16.85%, respectively for reducing the HTF mass flow rate by 14.29%. A higher stratification number can be achieved by using a two-layered PBTES instead of a single-layered PBTES filled with the corresponding larger diameter PCM capsules. The second law efficiency of the two-layered PBTES is found to be less than that of the single-layered PBTES. A decrease in the bed height of larger PCM capsules decreases the exergetic efficiency of the two-layered PBTES by 3.27%. The findings from this study can be used in further designing and optimising the multi-layered PBTES.  相似文献   

14.
多孔介质中高温气体非稳态渗流传热数值计算   总被引:1,自引:0,他引:1  
针对水平导管中填充颗粒物料层内的高温气体参流传热现象,考虑渗流与传热的相互作用并采用局部非平衡假设建立多孔介质中的瞬态渗流传热物理数学模型。研究不同情况下填充物料中的渗流速度和气固温度分布。计算结果表明,高温热气体对水平导管中移动颗粒料层的热渗透主要发生在渗流入口端区域,随着渗流时间延长,热渗透深度沿导管推进。增大入口渗流速度以及减小出料速度,将导致物料温度沿导管慢速下降,热渗透深度扩大,热渗透作用区域内的物料温度水平提高。在热渗透作用区域,孔隙率对流场和温度场有很大的影响。研究对于高温反应器的颗粒输运和给料器的设计与运行有一定的参考作用。  相似文献   

15.
In this study, an external melt ice‐on‐coil thermal storage was studied and tested over various inlet conditions of secondary fluid—glycol solution—flow rate and temperature in charging process. Experiments were conducted to investigate the effect of inlet conditions of secondary fluid and validate the numerical model predictions on ice‐on‐coil thermal energy storage system. The total thermal storage energy and the heat transfer rate in the system were investigated in the range of 10 l min ?1?V??60 l min ?1. A new numerical model based on temperature transforming method for phase change material (PCM) described by Faghri was developed to solve the problem of the system consisting of governing equations for the heat transfer fluid, pipe wall and PCM. Numerical simulations were performed to investigate the effect of working conditions of secondary fluid and these were compared with the experimental results. The numerical results verified with experimental investigation show that the stored energy rises with increasing flow rate a decreasing tendency. It is also observed that the inlet temperature of the fluid has more influence on energy storage quantity than flow rate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

17.
Thermal stratification in solar energy storage tanks plays an important role in enhancing the performance of solar domestic hot water systems. The mixing that occurs when hot fluid from the solar collector enters the top of the tank is detrimental to the stratification. Mathematical models that are used for system analysis must therefore be able to capture the effects of this inlet jet mixing in order to accurately predict system performance. This paper presents a computational study of the heat transfer and fluid flow in a thermal storage tank of a solar domestic hot water system with a vertical inlet under negative buoyant plume conditions. The effects of parameters such as the fluid inlet velocity and temperature as well as inlet pipe diameter on the thermal mixing were considered. The work culminated in the development of a one-dimensional empirical model capable of predicting the transient axial temperature distribution inside the thermal storage tank. Predictions from the new model were in good agreement with both experimental data and detailed computational fluid dynamics predictions.  相似文献   

18.
An experimental analysis is presented to establish the thermal performance of a latent heat thermal storage (LHTS) unit. Paraffin is used as the phase change material (PCM) on the shell side of the shell and tube‐type LHTS unit while water is used as the heat transfer fluid (HTF) flowing through the inner tube. The fluid inlet temperature and the mass flow rate of HTF are varied and the temperature distribution of paraffin in the shell side is measured along the radial and axial direction during melting and solidification process. The total melting time is established for different mass flow rates and fluid inlet temperature of HTF. The motion of the solid–liquid interface of the PCM with time along axial and radial direction of the test unit is critically evaluated. The experimental results indicate that the melting front moves from top to bottom along the axial direction while the solidification front moves only in the radial direction. The total melting time of PCM increases as the mass flow rate and inlet temperature of HTF decreases. A correlation is proposed for the dimensionless melting time in terms of Reynolds number and Stefan number of HTF. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21120  相似文献   

19.
C. Arkar  S. Medved 《Solar Energy》2007,81(9):1078-1087
This article presents a study of the free cooling of a low-energy building using a latent-heat thermal energy storage (LHTES) device integrated into a mechanical ventilation system. The cylindrical LHTES device was filled with spheres of encapsulated RT20 paraffin, a phase-change material (PCM). A numerical model of the LHTES was developed to identify the parameters that have an influence on the LHTES’s thermal response, to determine the optimum phase-change temperature and to form the LHTES’s temperature-response function. The last of these defines the LHTES’s outlet-air temperature for a periodic variation of the inlet ambient-air temperature and the defined operating conditions. The temperature-response function was then integrated into the TRNSYS building thermal response model. Numerical simulations showed that a PCM with a melting temperature between 20 and 22 °C is the most suitable for free cooling in the case of a continental climate. The analyses of the temperatures in a low-energy building showed that free cooling with an LHTES is an effective cooling technique. Suitable thermal comfort conditions in the presented case-study building could be achieved using an LHTES with 6.4 kg of PCM per square metre of floor area.  相似文献   

20.
基于高温相变材料,对填充床储热系统中储热单元球体的储热性能进行了模拟研究.研究了不同传热流体温度和球体直径对球体储热性能的影响规律,对导热为主的相变储热过程与导热和自然对流共同作用的相变储热过程进行了比较分析,同时还探讨了高温辐射换热的影响.结果表明,相变时间随球体直径的增大而增大,随传热流体温度的增大而减小.当考虑相变区域自然对流时,总的相变时间显著减少,和单纯导热相比,完全相变时间缩短了近16%.在导热和自然对流的基础上加上辐射传热后可以看出,辐射换热强化了球体内的传热过程,加快了相变材料的熔化速度,强化了自然对流的作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号