首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between the structure and viscoelastic properties of the epoxy resins prepared from o-cresol novolacs was studied. Our model epoxy resins were two kinds of epoxy compounds synthesized from three-nuclei and four-nuclei o-cresol novolacs. In addition to these models, a commercially available o-cresol novolac-type epoxy resin was also studied. Each of the three epoxy compounds was cured with one of three kinds of novolacs, which were starting materials of the above-mentioned epoxy resins. Characteristic properties of the cured resins, such as glass transition temperature (Tg), average molecular weight between crosslinking points (M¯c), and front factor (?) were obtained. It was concluded that the number of functional groups contained in the curing system almost dominated the viscoelastic properties of the cured resins.  相似文献   

2.
o-Cresol novolac-type epoxy resins having hydroxymethyl group were synthesized. These epoxy resins were cured with a mixture of 4,4′-diaminodiphenylmethane and m-phenylenediamine (molar ratio, 6:4) as a hardener. Effects of molecular weight distribution of epoxy resins on curing behavior were studied. Curing behavior of epoxy resins with hardener were examined by differential scanning calorimetery (DSC), and cure reaction parameters were obtained. Viscoelastic properties of the cured epoxy resins were studied by dynamic mechanical analyzer. It was found that the lower the average molecular weight of the epoxy resin, that is, the higher the concentration of hydroxymethyl group, the shorter the onset time of exothermal reaction, the higher the rate constant (k), and the lower the activation energy (Ea) were. It was also found that glass transition temperature (Tg) of fully cured epoxy resins was higher than those of fully cured general novolac-type epoxy resins.  相似文献   

3.
Synthesis and properties of urethane elastomer-modified epoxy resins were studied. The urethane elastomer-modified epoxy resins were synthesized by the reaction of a 4-cresol type epoxy compound having hydroxymethyl groups (EPCDA) with isocyanate prepolymer. The structure was identified by IR, 1H NMR and GPC. These epoxy resins (EPCDATDI) were mixed with a commercial epoxy resin (DGEBA) in various ratios. The mixed epoxy resins were cured with a mixture of 4,4′-diaminodiphenylmethane and 3-phenylenediamine (molar ratio 6:4) as a hardener. The curing behaviour of these epoxy resins was studied by DSC. The higher the concentration of EPCDATDI, the higher the onset temperature and the smaller the rate constant (k) of the exothermic cure reaction were. It was considered that the ratio of hydroxymethyl group to epoxide group was very small and the molecular weight of EPCDATDI was large. Therefore, the accelerating effect of the hydroxymethyl group on the epoxide–amine reaction was cancelled by the retardant effect of increased molecular weight and viscosity, and decreased molecular motion. Toughness was estimated by Izod impact strength and fracture toughness (K1C). On addition of 10 wt% EPCDATDI with low molecular weight (M?n 6710, estimated by GPC using polystyrene standard samples), Izod impact strength and K1C increased by 70% and 60%, respectively, compared with unmodified epoxy resin. Glass transition temperatures (Tg) for the cured epoxy resins mixed with EPCDATDI measured by dynamic mechanical spectrometry were the same as those of unmodified epoxy resin. The storage modulus (E′) at room temperature decreased with increasing concentration of EPCDATDI. Toughness and dynamic mechnical behaviour of cured epoxy resin systems were studied based on the morphology.  相似文献   

4.
We have synthesized a series of epoxy resins containing melamine phosphate (MP) and investigated their thermal and flame retardation properties. MP functions as a hardener and a flame retardant or as an additive of the cured epoxy resin to enhance flame retardation properties of epoxy resins. The reactions of DGEBA cured in the presence of MP were monitored by NMR and FTIR. Our results show that in both reactive and additive modes, MP is effective in increasing limiting oxide index (LOI) and the char yields of epoxy resins at lower phosphorous content. We observed that flame retardation by MP in its reactive mode is better than in its additive mode; the same phenomenon was found also for the glass-transition temperature (T g). Thermogravimetric analysis (TGA) demonstrated that epoxy resins containing MP decompose at relatively lower temperatures than those lacking MP; this decomposition results in a protective layer forming that prevents the epoxy resins from decomposing further by combustion.  相似文献   

5.
An attempt was made to toughen diglycidyl ether of bisphenol A (DGEBA) type epoxy resin with liquid natural rubber possessing hydroxyl functionality (HTLNR). Epon 250 epoxy monomer is cured using nadic methyl anhydride as hardener in presence of N, N dimethyl benzyl amine as accelerator. HTLNR of different concentrations up to 20 wt % is used as modifier for epoxy resin. The addition HTLNR to an anhydride hardener/epoxy monomer mixture has given rise to the formation of phase-separated structure, consisting of small spherical liquid natural rubber particles bonded to the surrounding epoxy matrix. The particle size increased with increase in rubber content. The viscoelastic properties of the blends were analyzed using dynamic mechanical thermal analysis. The Tg corresponding to epoxy rich phase was evident from the dynamic mechanical spectrum, while the Tg of the rubber phase was overlapped by the β relaxation of epoxy phase. Glass transition of the epoxy phase decreased linearly as a function of the amount of rubber. The mechanical properties such as impact and fracture toughness were also carefully examined. The impact and fracture toughness increase with HTLNR content. A threefold increase in impact strength was observed with 15 wt % HTLNR/epoxy blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
High-performance tetrafunctional epoxy resins were synthesized by reacting a suitable tetraphenols which were obtained by the condensation of appropriate dialdehyde with phenol followed by epoxidation with a halohydrin. The structure of the synthesized tetraphenols was confirmed by infrared (IR), mass spectra (MS), and nuclear magnetic resonance (NMR) spectroscopy. Dispersed silicone rubbers were used to reduce the stress of the synthesized tetrafunctional epoxy resin cured with phenolic novolac resin for electronic encapsulation application. The dynamic viscoelastic properties and morphologies of neat rubber-modified epoxy networks were investigated. The thermal mechanical properties and moisture absorption of encapsulants formulated from the synthesized tetrafunctional epoxy resins were also studied. The results indicate that a low-stress, high glass transition temperature (Tg), and low-moisture-absorbing epoxy resin system was obtained for semiconductor encapsulation application. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Isothermal curing of an epoxy resin based on diglycidyl ether of bisphenol A, using a hardener derived from phthalic anhydride, has been performed at curing temperatures between 30 and 130°C. Samples were cured isothermally at various intervals of time and analyzed by differential scanning calorimetry (DSC), the glass transition temperature Tg, and the conversion degree being determined by the residual enthalpy technique. The vitrification phenomenon and a further structural relaxation process, occurring at curing temperatures (Tc) lower than the maximum Tg (109°C), at which Tg equalizes Tc, have been studied at curing temperatures between 30 and 100°C. The structural relaxation process is analyzed by the endothermic peak that appears superposed on Tg in dynamic DSC scans. The area of this peak (Q) is a measure of the recovery enthalpy, and thus of the extent of the relaxation process. This process begins at higher curing times (tc) when Tc decreases because the vitrification of the system starts later. Both the enthalpy recovery (Q) and the temperature of the endothermic peak (Tm) increase with the annealing time (ta), calculated as the difference between tc and the time in which vitrification occurs, and tend to have a limiting value due to the fact that the system loses mobility when the free volume decreases during its asymptotic approach toward the metastable equilibrium state. Furthermore, the dependence of Q and Tm on ta at different Tc shows that the relaxation process in partially cured resins depends on the conversion degree of the system and consequently on the crosslinking density of the network.  相似文献   

8.
The role of rubber particle cavitation resistance on toughening of epoxy resins is still unresolved. In this research, the role of rubber particle cavitation resistance was exclusively studied. Two types of core‐shell rubber (CSR) particles with different cavitation resistances were utilized for modifying epoxy resin. Matrix crosslink density (XLD) was varied by using nonstoichiometric amounts of hardener. Fracture toughness values of neat and CSR‐modified epoxy samples decreased with lowering of XLD via deviation from stoichiometric point. It was resulted by higher modulus and lower elongation at break of the nonstoichiometric samples, and also antiplasticization of epoxy networks resulted from suppression of β‐transition relaxation motions. In all XLDs, the CSR particles with higher core Tg and modulus yielded higher fracture energy. Results showed that core properties such as Tg and modulus of CSR particles had a significant effect on toughening of the epoxy networks. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

9.
In this work, the fundamental kinetic and structure/property information for a novel phosphorus‐based hardener, bis(4‐aminophenoxy) phosphonate is cured with a range of common epoxy resins such as diglycidyl ether of bisphenol A, tri glycidyl p‐amino phenol and tetra glycidyl diamino diphenyl methane (TGDDM) at various cure temperatures. The rate coefficients k1 and k2 for the primary and secondary amine epoxide addition reactions, respectively, were determined and were found to exhibit a positive substitution effect for the TGAP and TGDDM epoxy resins. Etherification or internal cyclization were shown to be important at higher levels of cure conversion, with these reactions being more significant for the TGAP/BAPP system. Some basic structure/property relationships were established between the glass transition temperature (Tg) and epoxide conversion. The master curve obtained for the superimposition of the various cure temperatures for each epoxy demonstrated the independence of the cure mechanism with temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99:3288–3299, 2006  相似文献   

10.
A series of UV-autocurable epoxy-multiacrylate resins was synthesized, and the effects of degree of polymerization (DP) and epoxy type on their properties were investigated. These autocurable multiacrylate resins possess good pot life and are cured rapidly when exposed to ultraviolet (UV) without the addition of photoinitiator or photosensitizer. The curing rate of the autocurable resins was probably dependent on the number of abstractable hydrogen in epoxy resins. Stress-strain, differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were used to characterize the properties of cured multiacrylate resins. Increased crosslinking density of cured films improved tensile properties. Increasing the molar ratio of epoxy resin in the multiacrylate resins was found to decrease the effective acrylate concentration of resins and to depress crosslinking density of cured resins, which also resulted in an increased elongation at break but a decreased Young's modulus and breaking strength. Furthermore, the different structures of epoxy resins were used to give wide range properties of cured epoxy-multiacrylate resins with a glass transition temperature (Tg range from 74 to 102°C. The film properties of the multiacrylate resins coated on steel plates were also investigated.  相似文献   

11.
Cobalt acrylate (CoA2) has been treated with bisphenol‐A and epichlorohydrin to modify epoxy resins. It was cured with p‐acetylbenzilidene triphenyl arsonium ylide. The properties such as epoxide equivalent weight (equiv/100 g), molecular weight, hydrolyzable chlorine content increases whereas hydroxyl content, refractive index decreases in the presence of CoA2. The cured epoxy resins shows improve electrical conductivity due to the incorporation of CoA2 with epoxy resins. The influence of complex formation of CoA2 with either linkage of epoxy resins were investigated by spectroscopy. The decrease in Tg from differential scanning calorimetry support the improve in flexibility. The dispersion of cobalt in epoxy resins matrix was confirmed by scanning electron microscope. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The tensile properties: Young's modulus, ultimate tensile strength, ultimate elongation, the glass transition temperature, and the dynamic mechanical properties (dynamic shear modulus (G'), loss tangent (Tan δ)), of three epoxy resins (Epon 828, Epon 836, Epon HPT 1071) cured with the disulfide-containing crosslinking agent—4.4-dithiodianilme (DTDA) have been characterized. The results show that DTDA is a satisfactory crosslinking agent for the epoxide resins that have been studied as compared to the well-known curing agent methylene dianiline (MDA). There are no significant differences between the properties of Epon 828 cured with DTDA at stoichiometric ratio (2:1) and Epon 828 cured with DTDA at small amine excess ratio (1.75:1). The glass transition temperature of the cured tetrafunctional epoxy resin Epon HPT 1971 (235°C) is significantly higher than that of difunctional epoxy resins such as Epon 828 (Tg–175°C), but the product is too brittle to be used without plasticizer.  相似文献   

13.
Presented here is an investigation of the structure–property relationships of crosslinked networks using three bi-functional glycidyl ether aromatic epoxy resins, two bi-aryl and one tri-aryl, cured with bi- and tri-aryl amines. Subtle changes to the monomer chemistry including changing aromatic substitution patterns from meta to para, methylene to isopropyl and isopropyl to ether were explored. Changing an epoxy resin backbone from methylene to isopropyl enhances backbone rigidity thus increasing glass transition temperature (Tg), yield strength, and strain despite reducing modulus. Changing meta-substitution to para increases Tg and yield strain while leaving strength unaffected and reducing modulus. Changing isopropyl linkages to ether reduces modulus, strength, Tg, and yield strain reflecting increased molecular flexibility. Using three instead of two aromatic rings increases the molecular weight between crosslinks thereby decreasing Tg and yield strain while increasing modulus and strength. Despite the complexities of multiple systems for varying epoxy resins and amine hardeners, the effect upon network properties is explained in terms of short- and long-range molecular and segmental mobility, crosslink density, and equilibrium packing density. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48874.  相似文献   

14.
A series of bio-rubber (BR) tougheners for thermosetting epoxy resins was prepared by grafting renewable fatty acids with different chain lengths onto epoxidized soybean oil at varying molar ratios. BR-toughened samples were prepared by blending BRs with diglycidyl ether of bisphenol A resins, Epon 828 and Epon 1001F, at different weight fractions and stoichiometrically cured using an amine curing agent, 4, 4′-methylene biscyclohexanamine (PACM). Fracture toughness properties of the unmodified and BR toughened polymer samples—including critical strain energy release rate (GIc), and critical stress intensity factor (KIc)—were measured to investigate the toughening effect of prepared BRs. It was found that the degree of phase separation and toughening were more controllable relative to similar polymers cured using the aromatic curing agent Epikure W, and the use of higher molecular epoxy resins produces a synergistic effect increasing the toughness much more than similar polymers made with lower molecular weight epoxy resins. Average BR domain sizes ranging from 200 to 900 nm were observed, and formulations with GIc, values KIc as high as 1.0 kJ/m2 and 1.4 MPa m1/2 were attained respectively for epoxy systems with Tg greater than 130°C.  相似文献   

15.
A comparative evaluation of systematically tailored chemical structures of various phosphorus‐containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot‐wet properties of a cured bifunctional bisphenol‐A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber‐reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus‐modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate‐based hardener. The overall mechanical performance of the materials cured with the phosphorus‐containing hardeners is comparable to that of a 4,4′‐DDS‐cured reference system. While the various phosphorus‐containing hardeners in general provide the epoxy‐based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber‐reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus‐containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Aminated lignin possessing significant amount of reactive amino groups was studied as a curing agent of epoxy resin. Fourier transform infrared spectroscopy results proved the reactivity of the aminated lignin with the epoxy resin. Both appearance features and scanning electron microscopy images indicated that the transparent and homogeneous epoxy resin films could be formed with the aminated lignin less than 40% in the hardener mixture. In addition, thermogravimetric analysis and dynamic thermomechanical analysis results revealed that the epoxy resin cured by aminated lignin had better thermal stability compared with ones cured by a common hardener. The mass loss of the epoxy resin cured by the aminated lignin before 300°C was small around only 2.5%. The Tg (the glass transition temperature) of epoxy resin sample after cured by mixed hardener increased from 79°C to 93°C. The obvious difference (70–84°C) of Td (the thermal deformation temperature) was also observed from the samples with and without the aminated lignin after cured at a high temperature. POLYM. ENG. SCI., 55:924–932, 2015. © 2014 Society of Plastics Engineers  相似文献   

17.
Water uptake in organic coatings remains an interesting challenge for fundamental and applied researches because chemical, physical, and mechanical properties are concerned. The polymer network, which is affected by the curing program, is a key factor for water absorption. In this work, an epoxy network based on diglycidyl ether of bisphenol A and a hardener triethylentetramine was cured at different temperatures: below Tg (protocol 1) and above Tg (protocol 2). DMA, Differential Scanning Calorimetry (DSC), and FT‐IR measurements showed that both protocols allow to obtain totally cured networks. However, DSC and DMA results revealed that both cured networks present different levels of homogeneity, depending on the different curing conditions, which affect the free volume and the activation volume associated with visco‐elastic properties. The mechanical properties of free films and water sorption behaviors were investigated as function of cured conditions. It was found that protocol 1‐cured networks present higher mechanical properties and was less affected by water ingress than protocol 2‐cured systems, leading to better barrier properties. These results highlight the influence of the curing program onto the heterogeneous distribution of the epoxy network. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
The study synthesized a trifluoromethyl (CF3) groups with a modified epoxy resin, diglycidyl ether of bisphenol F (DGEBF), using environmental friendly methods. The epoxy resin was cured with 4,4′‐diaminodiphenyl‐methane (DDM). For comparison, this study also investigated curing of commercially available diglycidyl ether of bisphenol A (DGEBA) with the same curing agent by varying the ratios of DGEBF. The structure and physical properties of the epoxy resins were characterized to investigate the effect of injecting fluorinated groups into epoxy resin structures. Regarding the thermal behaviors of the specimens, the glass transition temperatures (Tg) of 50–160°C and the thermal decomposition temperatures of 200–350 °C at 5% weight loss (Td5%) in nitrogen decreased as amount of DGEBF increased. The different ratios of cured epoxy resins showed reduced dielectric constants (Dk) (2.03–3.80 at 1 MHz) that were lower than those of pure DGEBA epoxy resins. Reduced dielectric constant is related to high electrronegativity and large free volume of fluorine atoms. In the presence of hydrophobic CF3 groups, the epoxy resins exhibited low moisture absorption and higher contact angles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
The curing behavior of two commercially formulated epoxy resins composed of the tetrafunctional amine dicyandiamide and with differing epoxy components, 4,4′-bisglycidylphenyl-2,2′-propane and the tetraglycidyl ether of methylene dianiline, is characterized by dynamic spring analysis. This supported viscoelastic technique is well suited to the determination of the onset of gelation under isothermal conditions but the method is not useful for monitoring later stages of reaction when the resins become more rigid. The activation energy for the curing of the two resins is about 87 kJ/mole (20.7 kcal/mole). Rate constants for the first order curing reaction are given. Additional studies of films cured below the ultimate Tg show that two relaxations can be observed upon heating. The first relaxation occurs near the original isothermal cure temperature with a low activation energy, about 250 kJ/mole, whereas the second relaxation occurs near the ultimate Tg, under the conditions used here, with an activation energy of 500–650 kJ/mole. It is believed that these activation energies provide a unique method of characterizing the molecular mobility of epoxy resins at various states of cure.  相似文献   

20.
In this article, modified poly(oxypropylene) diamines were synthesized and used as a new flexible curing agent for epoxy resins. The purpose of modification is to introduce urea group into epoxy resins. The reaction rate, mechanical properties, glass transition temperature (Tg), and fracture surface morphology of these toughened epoxy resins were investigated. Because of urea groups, the reactivity between poly(oxypropylene) diamines and epoxy resins was significantly enhanced. At the same time, the urea groups resulted in strong intersegmental hydrogen bonding between modified poly(oxypropylene) chain, which reduced the compatibility of poly(oxypropylene) with epoxy resins and resulted in higher Tg of toughened epoxy. The modified sample had tensile strength of 15.8 MPa and ultimate elongation of 118% at room temperature, whereas the unmodified sample only had 6.2 MPa and 70%. The scanning electron microscope analysis showed that the modified system displayed tough fracture feature, whereas the unmodified system showed typical brittle fracture. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号