首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The US Federal Aviation Administration (FAA) has developed a standard set of colors for coding information on air traffic control (ATC) displays. A significant complication was that the air traffic controller population includes people who have color-vision deficiencies (CVDs). We wrote a software tool to assist the FAA in selecting a preliminary color set. It accepts a set of luminances and chromaticity coordinates as input and: (1) Draws graphics and calculates color-related figures of merit to predict whether the set will be acceptable for color-normal and CVD users; (2) Flags colors and pairings that violate human factors criteria; and (3) Allows designers to adjust the colors and see the resulting changes immediately. The tool has been used to perform a pilot study for the FAA’s color-set development project and should be useful for designing other color-coding sets, also.  相似文献   

2.
3.
Metro shield construction will inevitably cause changes in the stress and strain state of the surrounding soil, resulting in stratum deformation and surface settlement (SS), which will seriously endanger the safety of nearby buildings, roads and underground pipe networks. Therefore, in the design and construction stage, optimizing the shield construction parameters (SCP) is the key to reducing the SS rate and increasing the safe driving speed (DS). However, optimization of existing SCP are challenged by the need to construct a unified multiobjective model for optimization that are efficient, convenient, and widely applicable. This paper innovatively proposes a hybrid intelligence framework that combines random forest (RF) and non-dominant classification genetic algorithm II (NSGA-II), which overcomes the shortcomings of time-consuming and high cost for the establishment and verification of traditional prediction models. First, RF is used to rank the importance of 10 influencing factors, and the nonlinear mapping relationship between the main SCP and the two objectives is constructed as the fitness function of the NSGA-II algorithm. Second, a multiobjective optimization framework for RF-NSGA-II is established, based on which the optimal Pareto front is calculated, and reasonable optimized control ranges for the SCP are obtained. Finally, a case study in the Wuhan Rail Transit Line 6 project is examined. The results show that the SS is reduced by 12.5% and the DS is increased by 2.5% with the proposed framework. Meanwhile, the prediction results are compared with the back-propagation neural network (BPNN), support vector machine (SVM), and gradient boosting decision tree (GBDT). The findings indicate that the RF-NSGA-II framework can not only meet the requirements of SS and DS calculation, but also used as a support tool for real-time optimization and control of SCP.  相似文献   

4.
The medical device conceptual design decision-making is a process of coordinating pertinent stakeholders, which will significantly affect the quality of follow-up market competitiveness. However, as the most challenging parts of user-centered design, traditional methods are mainly focusing on determining the priorities of the evaluation criteria and forming the comprehensive value (utility) of the conceptual scheme, may not fully deal with the interaction and interdependent between the conflicts of interest among stakeholders and weigh the ambiguous influence on the overall design expectations, which results in the unstable decision-making results. To overcome this drawback, this paper proposes a cooperative game theory based decision model for device conceptual scheme under uncertainty. The proposed approach consists of three parts: first part is to collect and classify needs of end users and professional users based on predefined evaluation criteria; second part is using rough set theory technique to create criteria correlation diagram and scheme value matrix from users; and third part is developing the fuzzy coalition utility model to maximize the overall desirability through the criteria correlation diagram with the conflict of interests of end and professional users considered, and then selecting the optimal scheme. A case study of blood pressure meter is used to illustrate the proposed approach and the result shows that this approach is more robust compared with the widely used the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach.  相似文献   

5.
Transfer learning (TL) is a machine learning (ML) method in which knowledge is transferred from the existing models of related problems to the model for solving the problem at hand. Relational TL enables the ML models to transfer the relationship networks from one domain to another. However, it has two critical issues. One is determining the proper way of extracting and expressing relationships among data features in the source domain such that the relationships can be transferred to the target domain. The other is how to do the transfer procedure. Knowledge graphs (KGs) are knowledge bases that use data and logic to graph-structured information; they are helpful tools for dealing with the first issue. The proposed relational feature transfer learning algorithm (RF-TL) embodies an extended structural equation modelling (SEM) as a method for constructing KGs. Additionally, in fields such as medicine, economics, and law related to people’s lives and property safety and security, the knowledge of domain experts is a gold standard. This paper introduces the causal analysis and counterfactual inference in the TL domain that directs the transfer procedure. Different from traditional feature-based TL algorithms like transfer component analysis (TCA) and CORelation Alignment (CORAL), RF-TL not only considers relations between feature items but also utilizes causality knowledge, enabling it to perform well in practical cases. The algorithm was tested on two different healthcare-related datasets — sleep apnea questionnaire study data and COVID-19 case data on ICU admission — and compared its performance with TCA and CORAL. The experimental results show that RF-TL can generate better transferred models that give more accurate predictions with fewer input features.  相似文献   

6.
The application of machine learning (ML) techniques to metal-based nanomaterials has contributed greatly to understanding the interaction of nanoparticles, properties prediction, and new materials discovery. However, the prediction accuracy and efficiency of distinctive ML algorithms differ with different metal-based nanomaterials problems. This, alongside the high dimensionality and nonlinearity of available datasets in metal-based nanomaterials problems, makes it imperative to review recent advances in the implementation of ML techniques for these kinds of problems. In addition to understanding the applicability of different ML algorithms to various kinds of metal-based nanomaterials problems, it is hoped that this work will help facilitate understanding and promote interest in this emerging and less explored area of materials informatics. The scope of this review covers the introduction of metal-based nanomaterials, several techniques used in generating datasets for training ML models, feature engineering techniques used in nanomaterials-machine learning applications, and commonly applied ML algorithms. Then, we present the recent advances in ML applications to metal-based nanomaterials, with emphasis on the procedure and efficiency of algorithms used for such applications. In the concluding section, we identify the most common and efficient algorithms for distinctive property predictions. The common problems encountered in ML applications for metal-based nanoinformatics were mentioned. Finally, we propose suitable solutions and future outlooks for various challenges in metal-based nanoinformatics research.  相似文献   

7.
A photosensitive water-borne overcoat comprising poly(vinyl alcohol), a glycoluril crosslinker, and a water-soluble photoacid generator was developed. The passivation coating has two features: low-temperature processability and applicability to organic-solvent-susceptible films. Photo-exposure and subsequent baking at 85 °C and development with water produced PGMEA-insoluble and transparent overcoat patterns. Uncured color patterns that were susceptible to the PGMEA-based coating solution remained intact after water-based overcoat application. By exploiting the features of the passivation coating, color patterns of green, red, and white were produced onto a glass substrate at a process temperature of 85 °C.  相似文献   

8.
Quantifying the uncertain linguistic evaluation from decision-makers (DMs) is one of the most challenging parts in the conceptual design decision. Although fuzzy decision models have been widely used to capture potential uncertainty by assigning a fuzzy term with the certain belief, the ambiguity subjective evaluation of semantic variables with conflict beliefs derived from DMs have not been well addressed. To solve this drawback, a concept decision model based on Dempster-Shafer (DS) evidence theory and intuitionistic fuzzy -Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) considering the ambiguity semantic variables fusion is proposed. Firstly, by incorporating semantic variables of intuitionistic fuzzy sets (IFSs), the diversified semantic judgments and its belief will be taken into account to form an ambiguity semantic initial decision matrix; secondly, the DS combination rule will be used to fuse the different semantic variables of multi-DMs in each scheme, update the belief of each semantic variable, and then the semantic fusion value matrix of the scheme will be constructed; finally, the weight of each evaluation objective will be calculated based on the value matrix and information entropy model, IFS-VIKOR model will be constructed to rank the concepts. A case study of the tree climbing and trimming machine will be employed to verify the proposed decision model. This decision model considering diversifying semantic variables and the conflict belief is proven to be effective compared with the IFS-SAW and ISF-TOPSIS.  相似文献   

9.
In this study, two types of convolutional neural network (CNN) classifiers are designed to handle the problem of classifying black plastic wastes. In particular, the black plastic wastes have the property of absorbing laser light coming from spectrometer. Therefore, the classification of black plastic wastes remains still a challenging problem compared to classifying other colored plastic wastes using existing spectroscopy (i.e., NIR). When it comes the classification problem of black plastic wastes, effective classification techniques by the laser spectroscopy of Fourier Transform-Infrared Radiation (FT-IR) with Attenuated Total Reflectance (ATR) and Raman to analyze the classification problem of black plastic wastes are introduced. Due to the strong ability of extracting spatial features and remarkable performance in image classification, 1D and 2D CNN through data features are designed as classifiers. The technique of chemical peak points selection is considered to reduce data redundancy. Furthermore, through the selection of data features based on the extracted 1D data with peak points is introduced. Experimental results demonstrate that 2DCNN classifier designed with the help of 2D data feature selection as well as 1DCNN classifier shows the best performance compared with other reported methods for classifying black plastic wastes.  相似文献   

10.
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   

11.
Reliable and accurate ship motion prediction is essential for ship navigation at sea and marine operations. Although previous studies have yielded rich results in the field of ship motion prediction, most of them have ignored the importance of the dynamic characteristics of ship motion for constructing forecasting models. Besides, the limitations of the single model and the autocorrelation characteristics of the residual series are also unfavorable factors that hinder the forecasting performance. To fill these gaps, a multi-objective heterogeneous integration model based on decomposition-reconstruction mechanism and adaptive segmentation error correction method is proposed in this paper for ship motion multi-step prediction. Specifically, the proposed model is divided into three stages, which are decomposition-reconstruction mechanism, multi-objective heterogeneous integration model and adaptive segmentation error correction method. The effectiveness of the proposed model is verified using four sets of real ship motion data collected from two sites in the South China Sea. The evaluation results show that the proposed model can effectively improve the prediction performance and outperforms other traditional models and state-of-the-art models in the field of ship motion prediction. Prospectively, the model proposed in this study can be used as an effective aid to ship warning systems and has the potential for practical application in ship marine operations.  相似文献   

12.
In the era of digitalization, there are many emerging technologies, such as the Internet of Things (IoT), Digital Twin (DT), Cloud Computing and Artificial Intelligence (AI), which are quickly developped and used in product design and development. Among those technologies, DT is one promising technology which has been widely used in different industries, especially manufacturing, to monitor the performance, optimize the progresses, simulate the results and predict the potential errors. DT also plays various roles within the whole product lifecycle from design, manufacturing, delivery, use and end-of-life. With the growing demands of individualized products and implementation of Industry 4.0, DT can provide an effective solution for future product design, development and innovation. This paper aims to figure out the current states of DT research focusing on product design and development through summarizing typical industrial cases. Challenges and potential applications of DT in product design and development are also discussed to inspire future studies.  相似文献   

13.
Although grip strength is frequently measured in clinical settings, methods for evaluating individual grip strength considering physical characteristics are limited. We attempted to develop an easily applicable statistical model to estimate and evaluate the grip strength of Korean workers according to their age, sex, and anthropometric data.Data were collected from the KNHANES (2014–2019). The data were divided into the test and training sets. Potential regression models for estimating grip strength have been suggested based on sex and hand dominance. The performance of each model was compared, and the best model was selected. The estimated grip strength was calculated for each participant. The distribution of the measured to estimated value ratios was presented. The ratios between the dominant and non-dominant hand grip strengths were also calculated.Overall, 21,807 (9652 men and 12,155 women) individuals were included in the dataset. The selected predictors were age, age^2, height, body mass index (BMI), and body mass-to-waist ratio for men and age, age^2, height, BMI, and waist circumference for women. The measured estimated values were 100.0 ± 16.2%, 100.0 ± 16.3% for dominant and non-dominant hands in men and 100.0 ± 18.9% for dominant and non-dominant hands in women. The 95% confidence interval of the dominant to non-dominant hand grip ratio was 84.4–126.7% for men and 82.4–131.3% for women.Grip strength in workers can be screened in comparison to that in the Korean population using the suggested models. This model is an effective method for identifying abnormalities in the upper extremities of Korean workers.  相似文献   

14.
In the era of Industry 4.0, Production Logistic Digital Twins (PLDTs) have garnered remarkable attention from both academic and industrial communities. This is evident from the growing number of research publications on PLDTs in international scientific journals and conferences. However, given the diversity and complexity of production logistics activities, there is a pressing need for systematic literature review to chart past research and identify potential directions for future endeavors. Therefore, this study primarily focuses on the application of Digital Twins (DTs) in Production Logistics (PL). Firstly, an analysis of PLDTs research profiling is carried out based on general trends, keywords, application scenarios, and basic functions. Secondly, the functional characteristics of PLDTs are examined while summarizing their advantages and limitations across various application scenarios such as transportation, packaging, warehousing, material distribution, and information processing. And the roles played by smart technologies such as Internet of Things (IoT) in PLDTs system are discussed. Finally, possible challenges and future directions of PLDTs in industrial application are presented, accompanied by appropriate classification and extensive recommendations.  相似文献   

15.
This paper proposes using Deep Neural Networks (DNN) models for recognizing construction workers’ postures from motion data captured by wearable Inertial Measurement Units (IMUs) sensors. The recognized awkward postures can be linked to known risks of Musculoskeletal Disorders among workers. Applying conventional Machine Learning (ML)-based models has shown promising results in recognizing workers’ postures. ML models are limited – they reply on heuristic feature engineering when constructing discriminative features for characterizing postures. This makes further improving the model performance regarding recognition accuracy challenging. In this paper, the authors investigate the feasibility of addressing this problem using a DNN model that, through integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) layers, automates feature engineering and sequential pattern detection. The model’s recognition performance was evaluated using datasets collected from four workers on construction sites. The DNN model integrating one convolutional and two LSTM layers resulted in the best performance (measured by F1 Score). The proposed model outperformed baseline CNN and LSTM models suggesting that it leveraged the advantages of the two baseline models for effective feature learning. It improved benchmark ML models’ recognition performance by an average of 11% under personalized modelling. The recognition performance was also improved by 3% when the proposed model was applied to 8 types of postures across three subjects. These results support that the proposed DNN model has a high potential in addressing challenges for improving the recognition performance that was observed when using ML models.  相似文献   

16.
With the ever-increasing demand for personalized product functions, product structure becomes more and more complex. To design a complex engineering product, it involves mechanical, electrical, automation and other relevant fields, which requires a closer multidisciplinary collaborative design (MCD) and integration. However, the traditional design method lacks multidisciplinary coordination, which leads to interaction barriers between design stages and disconnection between product design and prototype manufacturing. To bridge the gap, a novel digital twin-enabled MCD approach is proposed. Firstly, the paper explores how to converge the MCD into the digital design process of complex engineering products in a cyber-physical system manner. The multidisciplinary collaborative design is divided into three parts: multidisciplinary knowledge collaboration, multidisciplinary collaborative modeling and multidisciplinary collaborative simulation, and the realization methods are proposed for each part. To be able to describe the complex product in a virtual environment, a systematic MCD framework based on the digital twin is further constructed. Integrate multidisciplinary collaboration into three stages: conceptual design, detailed design and virtual verification. The ability to verify and revise problems arising from multidisciplinary fusions in real-time minimizes the number of iterations and costs in the design process. Meanwhile, it provides a reference value for complex product design. Finally, a design case of an automatic cutting machine is conducted to reveal the feasibility and effectiveness of the proposed approach.  相似文献   

17.
Clamping quality is one of the main factors that will affect the deformation of thin-walled parts during their processing, which can then directly affect parts’ performance. However, traditional clamping force settings are based on manual experience, which is a random and inaccurate manner. In addition, dynamic clamping force adjustment according to clamping deformation is rarely considered in clamping force control process, which easily causes large clamping deformation and low machining accuracy. To address these issues, this study proposes a digital twin-driven clamping force control approach to improve the machining accuracy of thin-walled parts. The total factor information model of clamping system is built to integrate the dynamic information of the clamping process. The virtual space model is constructed based on finite element simulation and deep neural network algorithm. To ensure bidirectional mapping of physical-virtual space, the workflow of clamping force control and interoperability method between digital twin models are elaborated. Finally, a case study is used to verify the effectiveness and feasibility of the proposed method.  相似文献   

18.
Incorporation of nanomaterials in device structure is the key to enhance performance of polymer light emitting diodes (PLEDs). The major challenges that impede competence of PLEDs, for application in display technology, are (i) non-availability of stable low work function metals to act as cathode, (ii) presence of charge trapping centers in the polymer chains and (iii) total internal reflection of light at ITO/glass and glass/air interfaces. The foremost problem leads to increase in turn ON voltage of the device and reduction in electron injection from cathode. Low injection and high trapping probability of electrons lead to charge imbalance in the emissive layer and shifting of recombination zone towards cathode. This immensely constrains the formation and radiative decay of excitons in the emissive layer and declines the luminosity of the device. In this review, experimental studies on the integration of nanomaterials in PLED structures to enhance device luminance are presented. The diverse impact of their geometric features, ionization potential, electrical conductivity and refractive index on the carrier transport and light extraction in PLEDs is discussed and a perspective on this evolving research path is provided.  相似文献   

19.
Quality control is a critical aspect of the modern electronic circuit industry. In addition to being a pre-requisite to proper functioning, circuit quality is closely related to safety, security, and economic issues. Quality control has been reached through system testing. Meanwhile, device miniaturization and multilayer Printed Circuit Boards have increased the electronic circuit test complexity considerably. Hence, traditional test processes based on manual inspections have become outdated and inefficient. More recently, the concept of Advanced Manufacturing or Industry 4.0 has enabled the manufacturing of customized products, tailored to the changing customers’ demands. This scenario points out additional requirements for electronic system testing: it demands a high degree of flexibility in production processes, short design and manufacturing cycles, and cost control. Thus, there is a demand for circuit testing systems that present effectiveness and accessibility without placing numerous test points. This work is focused on automated test solutions based on machine learning, which are becoming popular with advances in computational tools. We present a new testing approach that uses autoencoders to detect firmware or hardware anomalies based on the electric current signature. We built a test set-up using an embedded system development board to evaluate the proposed approach. We implemented six firmware versions that can run independently on the test board – one of them is considered anomaly-free. In order to obtain a reference frame to our results, two other classification techniques (a computer vision algorithm and a random forest classification model) were employed to detect anomalies on the same development board. The outcomes of the experiments demonstrated that the proposed test method is highly effective. For several test scenarios, the correct detection rate was above 99%. Test results showed that autoencoder and random forest approaches are effective. However, random forests require all data classes to be trained. Training an autoencoder, on the other hand, only requires the reference (anomaly-free) class.  相似文献   

20.
Scalability is an important feature for the long term adoption of a rating system that determines the privacy and security of Internet of Toys (IoToys). As technology evolves and innovations are introduced in the IoToy market, the rating system must be capable of including the impact of new factors in the overall safety of the toy. Similarly obsolete factors should be easily removable. The rating system should also account for the difference in the weightage of individual factors. This research enhances the ChildShield rating system proposed by Allana & Chawla (2021) to reflect these additional features. The corresponding consumer label is expanded to include a secondary layer to present supplementary details to the consumer during purchase and use. A case study of grading an IoToy with the enhanced system is conducted in collaboration with a manufacturer and the steps for rating and labelling of IoToys using self-evaluation and guided modes are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号