共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
对称非负矩阵分解SNMF作为一种基于图的聚类算法,能够更自然地捕获图表示中嵌入的聚类结构,并且在线性和非线性流形上获得更好的聚类结果,但对变量的初始化比较敏感。另外,标准的SNMF算法利用误差平方和来衡量分解的质量,对噪声和异常值敏感。为了解决这些问题,在集成学习视角下,提出一种鲁棒自适应对称非负矩阵分解聚类算法RS3NMF(robust self-adaptived symmetric nonnegative matrix factorization)。基于L2,1范数的RS3NMF模型缓解了噪声和异常值的影响,保持了特征旋转不变性,提高了模型的鲁棒性。同时,在不借助任何附加信息的前提下,利用SNMF对初始化特征的敏感性来逐步增强聚类性能。采用交替迭代方法优化,并保证目标函数值的收敛性。大量实验结果表明,所提RS3NMF算法优于其他先进的算法,具有较强的鲁棒性。 相似文献
3.
4.
5.
针对鲁棒非负矩阵分解(RNMF)的运算规模随训练样本数量逐渐增多而不断增大的问题,提出一种稀疏限制的增量式鲁棒非负矩阵分解算法。首先,对初始数据进行鲁棒非负矩阵分解;然后,将其分解结果参与到后续迭代运算;最后,在对系数矩阵增加稀疏限制的情况下与增量式学习相结合,使目标函数值在迭代求解时下降地更快。该算法在节省运算时间的同时提高了分解后数据的稀疏度。在数值实验中,将所提算法与鲁棒非负矩阵分解算法、稀疏限制的鲁棒非负矩阵分解(RNMFSC)算法进行了比较。在ORL和YALE人脸数据库上的实验结果表明,所提算法在运算时间和分解后数据的稀疏度等方面均优于其他两个算法,并且还具有较好的聚类效果,尤其在YALE人脸数据库上当聚类类别数为3时该算法的聚类准确率达到了91.67%。 相似文献
6.
非负矩阵分解作为一种有效的数据表示方法被广泛应用于模式识别和机器学习领域。为了得到原始数据紧致有效的低维数据表示,无监督非负矩阵分解方法在特征降维的过程中通常需要同时发掘数据内部隐含的几何结构信息。通过合理建模数据样本间的相似性关系而构建的相似度图,通常被用来捕获数据样本的空间分布结构信息。子空间聚类可以有效发掘数据内部的子空间结构信息,其获得的自表达系数矩阵可用于构建相似度图。该文提出了一种非负子空间聚类算法来发掘数据的子空间结构信息,同时利用该信息指导非负矩阵分解,从而得到原始数据有效的非负低维表示。同时,该文还提出了一种有效的迭代求解方法来求解非负子空间聚类问题。在两个图像数据集上的聚类实验结果表明,利用数据的子空间结构信息可以有效改善非负矩阵分解的性能。 相似文献
7.
为了解决现有数字水印中鲁棒性和不可感知性之间的矛盾,设计了一种基于非负矩阵分解和离散小波变换的图像零水印算法。原始图像进行不重叠分块,分别对每子块图像进行3级小波分解得到低频近似分量;对细节分量作非负矩阵分解得到可近似表示子块图像的基矩阵和系数矩阵;将系数矩阵量化得到特征向量,通过特征向量和水印的运算得到原始图像的版权信息。实验结果表明该方案对常见信号处理具有很强的鲁棒性,同时密钥的使用保障了算法的安全性。 相似文献
8.
9.
利用欧几里得距离衡量非负矩阵非负满秩分解的近似度,将其转化为最小二乘法求最优问题。并用VC6.0与Lingo对算法进行程序实现,可以为非负矩阵分解应用研究提供一些参考。 相似文献
10.
非负矩阵分解(Non-negative Matrix Factorization, NMF)是一类广泛应用于数据挖掘和机器学习领域的重要矩阵分解模型,可从一组高维非负向量中提取出低维、稀疏和有意义的特征。标准NMF利用Frobenius范数的平方度量重建误差,虽然在一些应用场景中表现出一定的有效性,但对非高斯噪声和离群点较为敏感。由于现实世界中的真实数据不可避免地包含各种噪声,因此有必要对非高斯噪声和离群点较为稳健的非负矩阵分解模型进行研究。为此,文中提出用Cauchy估计函数取代标准NMF中的平方形式的残差。在度量样本重建误差时,充分考虑样本特征不同维度之间的相关性,以样本的重建误差作为基本的重建误差度量单元。此外,基于半二次规划推导了高效的乘性更新规则,用于求解所提出的模型。在3个真实人脸图像库上的聚类实验中验证了所提模型和算法的有效性。实验结果表明,所提算法对人脸姿态、光照和表情变化均表现出一定的稳健性,且聚类结果对参数的依赖性较小。 相似文献
11.
传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后将相似图作为约束项求得非负矩阵的最优分解。相似图的约束使得非负矩阵分解在降维过程中保持了原始数据之间的相似性关系,进而提高了非负矩阵分解的判别能力。图像聚类实验结果表明了该方法的有效性。 相似文献
12.
非负矩阵分解是近年来快速发展的一类机器学习算法,能够实现对高维数据的维度规约及局部特征提取,在诸多生物信息问题的分析与处理中得到了广泛应用,并衍生出一系列实用算法。本文系统分析了非负矩阵分解的数学理论基础及其特有的局部表达属性,综述了标准非负矩阵分解与各种衍生算法的发展历程及算法初始化与参数选取方法的研究进展,并从序列特征分析、表达模式与功能模块识别、生物医学文献挖掘等几个方面总结了非负矩阵分解算法在生物信息学领域的应用成果。最后,指出了非负矩阵分解算法研究及其应用于生物信息处理所面临的问题,分析和预测了可能的发展方向。 相似文献
13.
14.
异构信息网络中包含多类实体和关系.随着数据规模增大时,不同类实体规模增长不平衡,异构关系数据也变得异常稀疏,导致聚类算法的时间复杂度高、准确率低.针对上述问题,提出了一种基于关联矩阵分解的2阶段联合聚类算法FNMTF-CM.第1阶段,抽取规模较小的一类实体中的关联关系构建关联矩阵,通过对称非负矩阵分解得到划分指示矩阵.与原始关系矩阵相比,关联矩阵的稠密度更高,规模更小.第2阶段,将划分指示矩阵作为关系矩阵三分解的输入,进而快速求解另一类实体的划分指示矩阵.在标准测试数据集和异构关系数据集上的实验表明,算法准确率和性能整体优于传统的基于非负矩阵分解的联合聚类算法. 相似文献
15.
16.
Link prediction has attracted wide attention among interdisciplinary researchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in future networks. Despite the presence of missing links in the target network of link prediction studies, the network it processes remains macroscopically as a large connected graph. However, the complexity of the real world makes the complex networks abstracted from real systems often contain many isolated nodes. This phenomenon leads to existing link prediction methods not to efficiently implement the prediction of missing edges on isolated nodes. Therefore, the cold-start link prediction is favored as one of the most valuable subproblems of traditional link prediction. However, due to the loss of many links in the observation network, the topological information available for completing the link prediction task is extremely scarce. This presents a severe challenge for the study of cold-start link prediction. Therefore, how to mine and fuse more available non-topological information from observed network becomes the key point to solve the problem of cold-start link prediction. In this paper, we propose a framework for solving the cold-start link prediction problem, a joint-weighted symmetric nonnegative matrix factorization model fusing graph regularization information, based on low-rank approximation algorithms in the field of machine learning. First, the nonlinear features in high-dimensional space of node attributes are captured by the designed graph regularization term. Second, using a weighted matrix, we associate the attribute similarity and first order structure information of nodes and constrain each other. Finally, a unified framework for implementing cold-start link prediction is constructed by using a symmetric nonnegative matrix factorization model to integrate the multiple information extracted together. Extensive experimental validation on five real networks with attributes shows that the proposed model has very good predictive performance when predicting missing edges of isolated nodes. 相似文献
17.
针对探地雷达(ground penetrating radar,GPR)采集数据时会产生高频杂波影响地下目标自动识别的问题。提出了一种基于变分贝叶斯的GPR图像非负矩阵分解方法(probability nonnegative matrix factorization,PNMF)。该方法使用变分贝叶斯模型对非负矩阵分解的基矩阵和系数矩阵进行近似推理,得到杂波成分的低秩矩阵表示,进而将杂波从图像中分离出来。实验过程采用模拟和实测数据进行对比分析,通过信噪比和视觉质量结果验证了PNMF对杂波有较好的抑制作用,具有较好的鲁棒性。 相似文献
18.
为提高手背静脉识别过程中特征的有效性,提出了一种基于改进非负矩阵分解(NMF)的识别算法.首先,静脉图像经过分块后,将每一块子图像的像素均值与平均梯度幅值作为图像原始特征;其次,将所有训练样本原始特征形成的特征矩阵进行非负矩阵分解,其中对分解后的系数向量加以稀疏性与可区分性约束,从而形成改进的非负矩阵分解模型;再次,基于梯度投影法对提出的非负矩阵分解模型进行求解,获取新的特征基与特征向量;最后,利用最近邻匹配算法对特征向量进行分类,实现身份的识别.实验结果表明,提出的识别算法可获得较高的识别率,处理过程具有较好实时性. 相似文献
19.
聚类问题一直是模式识别和机器学习领域一个比较活跃而且极负挑战性的研究方向。谱聚类是近年来兴起的一类较流行的聚类方法。该文将非负约束引入到传统的谱聚类方法中,提出了一种基于非负约束的谱聚类方法。非负约束已在许多应用领域被证明是一种有用的性质。文中对比实验表明,基于非负约束的谱聚类方法在整体上明显优于传统的谱聚类方法。 相似文献