首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic sensors capable of detecting nanoscale volumes of spins allow for non-invasive, element-specific probing. The error in such measurements is usually reduced by increasing the measurement time, and noise averaging the signal. However, achieving the best precision requires restricting the maximum possible field strength to much less than the spectral linewidth of the sensor. Quantum entanglement and squeezing can then be used to improve precision (although they are difficult to implement in solid-state environments). When the field strength is comparable to or greater than the spectral linewidth, an undesirable trade-off between field strength and signal precision occurs. Here, we implement novel phase estimation algorithms on a single electronic spin associated with the nitrogen-vacancy defect centre in diamond to achieve an ~8.5-fold improvement in the ratio of the maximum field strength to precision, for field magnitudes that are large (~0.3?mT) compared to the spectral linewidth of the sensor (~4.5?μT). The field uncertainty in our approach scales as 1/T(0.88), compared to 1/T(0.5) in the standard measurement approach, where T is the measurement time. Quantum phase estimation algorithms have also recently been implemented using a single nuclear spin in a nitrogen-vacancy centre. Besides their direct impact on applications in magnetic sensing and imaging at the nanoscale, these results may prove useful in improving a variety of high-precision spectroscopy techniques.  相似文献   

2.
The nitrogen-vacancy defect centre in diamond has potential applications in nanoscale electric and magnetic-field sensing, single-photon microscopy, quantum information processing and bioimaging. These applications rely on the ability to position a single nitrogen-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single diamond nanocrystal grafted onto the tip of a scanning probe microscope, suffer from short spin coherence times due to poor crystal quality, and from inefficient far-field collection of the fluorescence from the nitrogen-vacancy centre. Here, we demonstrate a robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns. This is achieved by positioning a single nitrogen-vacancy centre at the end of a high-purity diamond nanopillar, which we use as the tip of an atomic force microscope. Our approach ensures long nitrogen-vacancy spin coherence times (~75?μs), enhanced nitrogen-vacancy collection efficiencies due to waveguiding, and mechanical robustness of the device (several weeks of scanning time). We are able to image magnetic domains with widths of 25?nm, and demonstrate a magnetic field sensitivity of 56?nT Hz(-1/2) at a frequency of 33?kHz, which is unprecedented for scanning nitrogen-vacancy centres.  相似文献   

3.
Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.  相似文献   

4.
磁测量是推动人类社会发展不可或缺的技术之一。以高探测灵敏度、高空间分辨率等关键指标作为牵引,近年来,多种量子体系被用于精密磁测量技术发展,金刚石氮-空位色心固态自旋体系就是其中之一。本文简述了氮-空位色心体系的精密磁测量技术及其应用研究,介绍了基于金刚石氮-空位色心自旋体系磁测量的原理和优势、基于该体系的磁测量方法研究工作、以及面向材料成像和生命科学等领域开展的研究工作,指出了未来基于金刚石氮-空位色心体系的精密磁测量技术有望发展新型矢量高灵敏度、高空间分辨率磁测量装备,为更多研究领域譬如地磁测绘、工业无损检测等重大应用提供新的支撑。  相似文献   

5.
The detection of single nuclear spins is an important goal in magnetic resonance spectroscopy. Optically detected magnetic resonance can detect single nuclear spins that are strongly coupled to an electron spin, but the detection of distant nuclear spins that are only weakly coupled to the electron spin has not been considered feasible. Here, using the nitrogen-vacancy centre in diamond as a model system, we numerically demonstrate that it is possible to detect two or more distant nuclear spins that are weakly coupled to a centre electron spin if these nuclear spins are strongly bonded to each other in a cluster. This cluster will stand out from other nuclear spins by virtue of characteristic oscillations imprinted onto the electron spin decoherence profile, which become pronounced under dynamical decoupling control. Under many-pulse dynamical decoupling, the centre electron spin coherence can be used to measure nuclear magnetic resonances of single molecules. This atomic-scale magnetometry should improve the performance of magnetic resonance spectroscopy for applications in chemical, biological, medical and materials research, and could also have applications in solid-state quantum computing.  相似文献   

6.
We have studied optical and spin properties of near-surface nitrogen-vacancy (NV) centers incorporated during chemical vapor phase growth of isotopically purified (12)C single-crystal diamond layers. The spectral diffusion-limited line width of zero-phonon luminescence from the NV centers is 1.2 ± 0.5 GHz, a considerable improvement over that of NV centers formed by ion implantation and annealing. Enhanced spin dephasing times (T(2)* ≈ 90 μs, T(2) ≈ 1.7 ms) due to the reduction of (13)C nuclear spins persist even for NV centers placed within 100 nm of the surface.  相似文献   

7.
Laraoui A  Hodges JS  Meriles CA 《Nano letters》2012,12(7):3477-3482
Semiconductor nanoparticles host a number of paramagnetic point defects and impurities, many of them adjacent to the surface, whose response to external stimuli could help probe the complex dynamics of the particle and its local, nanoscale environment. Here, we use optically detected magnetic resonance in a nitrogen-vacancy (NV) center within an individual diamond nanocrystal to investigate the composition and spin dynamics of the particle-hosted spin bath. For the present sample, a ~45 nm diamond crystal, NV-assisted dark-spin spectroscopy reveals the presence of nitrogen donors and a second, yet-unidentified class of paramagnetic centers. Both groups share a common spin lifetime considerably shorter than that observed for the NV spin, suggesting some form of spatial clustering, possibly on the nanoparticle surface. Using double spin resonance and dynamical decoupling, we also demonstrate control of the combined NV center-spin bath dynamics and attain NV coherence lifetimes comparable to those reported for bulk, Type Ib samples. Extensions based on the experiments presented herein hold promise for applications in nanoscale magnetic sensing, biomedical labeling, and imaging.  相似文献   

8.
We demonstrate coherent quantum control of a single spin driven by the motion of a mechanical resonator. The motion of a mechanical resonator is magnetically coupled to the electronic spin of a single nitrogen-vacancy center in diamond. Synchronization of spin-addressing protocols to the motion of the driven oscillator is used to fully exploit the coherence of this hybrid mechanical-spin system. We demonstrate applications of this coherent mechanical spin-control technique to nanoscale scanning magnetometry.  相似文献   

9.
Controlling decoherence is the biggest challenge in efforts to develop quantum information hardware. Single electron spins in gallium arsenide are a leading candidate among implementations of solid-state quantum bits, but their strong coupling to nuclear spins produces high decoherence rates. Group IV semiconductors, on the other hand, have relatively low nuclear spin densities, making them an attractive platform for spin quantum bits. However, device fabrication remains a challenge, particularly with respect to the control of materials and interfaces. Here, we demonstrate state preparation, pulsed gate control and charge-sensing spin readout of hole spins confined in a Ge-Si core-shell nanowire. With fast gating, we measure T(1) spin relaxation times of up to 0.6 ms in coupled quantum dots at zero magnetic field. Relaxation time increases as the magnetic field is reduced, which is consistent with a spin-orbit mechanism that is usually masked by hyperfine contributions.  相似文献   

10.
Abstract

The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In January 2017, the participants of PQE were asked to consider the equally important prospects for the future, and to formulate a set of questions representing some of the greatest aspirations in this broad field. The result is this multi-authored paper, in which many of the world’s leading experts address the following fundamental questions: (1) What is the future of gravitational wave astronomy? (2) Are there new quantum phases of matter away from equilibrium that can be found and exploited – such as the time crystal? (3) Quantum theory in uncharted territory: What can we learn? (4) What are the ultimate limits for laser photon energies? (5) What are the ultimate limits to temporal, spatial and optical resolution? (6) What novel roles will atoms play in technology? (7) What applications lie ahead for nitrogen-vacancy centres in diamond? (8) What is the future of quantum coherence, squeezing and entanglement for enhanced super-resolution and sensing? (9) How can we solve (some of) humanity’s biggest problems through new quantum technologies? (10) What new understanding of materials and biological molecules will result from their dynamical characterization with free-electron lasers? (11) What new technologies and fundamental discoveries might quantum optics achieve by the end of this century? (12) What novel topological structures can be created and employed in quantum optics?  相似文献   

11.
Technical Physics Letters - A method for determining the orientation of nitrogen-vacancy (NV) defect structure orientation in diamond crystals and nanodiamonds is proposed, which is based on the...  相似文献   

12.
A magnetometer utilizing a superconducting quantum interference device (SQUID) as a magnetic flux sensor is described. Its unique capabilities include: sensitivity of about an order of magnitude better than that of heretofore published magnetometers of other types, measurement range extending to zero field, and appreciable frequency response at high sensitivity (12 c/s bandwidth at 10.7 ?Gs full scale). The SQUID is a null detector in a feedback circuit in which unknown field changes are measured in terms of bucking field changes. Some limitations and design considerations are discussed. A recording of micropulsations of the earth's magnetic field is shown.  相似文献   

13.
Spin injection processes in the double quantum dots of ZnSe-based diluted magnetic semiconductors are discussed. Double quantum dots are fabricated from ZnSe-based double quantum wells by electron beam lithography and wet etching. In these samples, the photo-excited carriers in the magnetic dots are injected into the non-magnetic dots. The circular polarization degrees of photoluminescence from the non-magnetic dots are measured by micro-photoluminescence measurement system under the magnetic field up to 5 T. The maximum spin polarization degrees of injected carriers determined from our experiment are 10% for double quantum wells and 15% for double quantum dots. The spin injection efficiency was estimated both from the observed circular polarization degree and the diffusion length of carriers. We concluded that the spin injection efficiency is increased in the double quantum dots.  相似文献   

14.
Spin transport and manipulation in semiconductors have been studied intensively with the ultimate goal of realizing spintronic devices. Previous work in GaAs has focused on controlling the carrier density, crystallographic orientation and dimensionality to limit the electron spin decoherence and allow transport over long distances. Here, we introduce a new method for the coherent transport of spin-polarized electronic wave packets using dynamic quantum dots (DQDs) created by the piezoelectric field of coherent acoustic phonons. Photogenerated spin carriers transported by the DQDs in undoped GaAs (001) quantum wells exhibit a spin coherence length exceeding 100 microm, which is attributed to the simultaneous control of the carrier density and the dimensionality by the DQDs during transport. In the absence of an applied magnetic field, we observe the precession of the electron spin induced by the internal magnetic field associated with the spin splitting of the conduction band (Dresselhaus term). The coherent manipulation of the precession frequency is also achieved by applying an external magnetic field.  相似文献   

15.
The ultrafast spin dynamics of the bright exciton in CdSe/ZnS nanocrystal quantum dots has been investigated using a circularly polarized pump-probe experiment. A remarkably fast spin flip (-500 fs) of the bright exciton was observed at 4 K, which is attributed to the anisotropic electron-hole exchange interaction and the random positioning of nanocrystal quantum dots. In the presence of an applied magnetic field (5 T), the exciton spin parallel to the external magnetic field was favored due to Zeeman splitting. We found that this imbalance can possibly be suppressed by the state-blocking and the mixing of the 1(L) and 1(U) states in asymmetric quantum dots.  相似文献   

16.
An integrated magnetic nanosensor based on a niobium dc SQUID (superconducting quantum interference device) for nanoscale applications is presented. The sensor, having a washer shape with a hole of 200?nm and two Josephson-Dayem nanobridges of 80?nm × 100?nm, consists of a Nb(30?nm)/Al(30?nm) bilayer patterned by electron beam lithography (EBL) and shaped by lift-off and reactive ion etch (RIE) processes. The presence of the niobium coils, integrated on-chip and tightly coupled to the SQUID, allows us to easily excite the sensor in order to get the voltage-flux characteristics and to flux bias the SQUID at its optimal point. The measurements were performed at liquid helium temperature. A voltage swing of 75?μV and a maximum voltage-flux transfer coefficient (responsivity) as high as 1?mV/Φ(0) were directly measured from the voltage-flux characteristic. The noise measurements were performed in open loop mode, biasing the SQUID with a dc magnetic flux at its maximum responsivity point and using direct-coupled low-noise readout electronics. A white magnetic flux noise spectral density as low as 2.5?μΦ(0)?Hz(-1/2) was achieved, corresponding to a magnetization or spin sensitivity in units of the Bohr magneton of 100?spin?Hz(-1/2). Possible applications of this nanosensor can be envisaged in magnetic detection of nanoparticles and small clusters of atoms and molecules, in the measurement of nanoobject magnetization, and in quantum computing.  相似文献   

17.
Recent developments of “multi-extreme” high magnetic field electron spin resonance (ESR) in Kobe will be reviewed. Our high magnetic field ESR covers the frequency region between 0.03 and 7 THz and the temperature region between 1.8 and 300 K. With this high magnetic field ESR system we can apply the magnetic field up to 55 T using a Cu-Ag pulsed magnet and a 300 kJ (10 kV) capacitor bank. Under this high magnetic field we can also apply the high pressure up to 1.4 GPa. As we can make the measurement under low temperature, high magnetic field and high pressure simultaneously, we name it as “multi-extreme” ESR. Moreover, in order to gain the sensitivity of our high magnetic field ESR, we have developed a micro-cantilever ESR system using a torque method, which enables the ESR measurement of micrometer size single crystal at low temperature. At the moment we are in the process of extending the magnetic field region of micro-cantilever ESR. Recently we have succeeded in making the measurement up to 369 GHz and the achieved sensitivity is about 1010 spins/G, which is much higher than that using the conventional transmission method. Finally our development of magnetization detected ESR using SQUID magnetometer (SQUID ESR) will be also presented.  相似文献   

18.
Lee H  Yang N  Cohen AE 《Nano letters》2011,11(12):5367-5372
We used a fluorescent chemical indicator of magnetic field to visualize the magnetic field around ferromagnetic nanostructures. The indicator was a chain-linked electron donor-acceptor molecule, phenanthrene-(CH2)12-O-(CH2)2-dimethylaniline, that forms spin-correlated radical pairs upon photoexcitation. The magnetic field altered the coherent spin dynamics, yielding an 80% increase in exciplex fluorescence in a 0.1 T magnetic field. The magnetic field distributions were quantified to precision of 1.8×10(-4) T by image analysis and agreed with finite-element nanomagnetic simulations.  相似文献   

19.
Silicon is one of the most promising semiconductor materials for spin-based information processing devices. Its advanced fabrication technology facilitates the transition from individual devices to large-scale processors, and the availability of a (28)Si form with no magnetic nuclei overcomes a primary source of spin decoherence in many other materials. Nevertheless, the coherence lifetimes of electron spins in the solid state have typically remained several orders of magnitude lower than that achieved in isolated high-vacuum systems such as trapped ions. Here we examine electron spin coherence of donors in pure (28)Si material (residual (29)Si concentration <50 ppm) with donor densities of 10(14)-10(15) cm(-3). We elucidate three mechanisms for spin decoherence, active at different temperatures, and extract a coherence lifetime T(2) up to 2 s. In this regime, we find the electron spin is sensitive to interactions with other donor electron spins separated by ~200 nm. A magnetic field gradient suppresses such interactions, producing an extrapolated electron spin T(2) of 10 s at 1.8 K. These coherence lifetimes are without peer in the solid state and comparable to high-vacuum qubits, making electron spins of donors in silicon ideal components of quantum computers, or quantum memories for systems such as superconducting qubits.  相似文献   

20.
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号