首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On optimal call admission control in cellular networks   总被引:10,自引:0,他引:10  
Two important Quality-of-Service (QoS) measures for current cellular networks are the fractions of new and handoff “calls” that are blocked due to unavailability of “channels” (radio and/or computing resources). Based on these QoS measures, we derive optimal admission control policies for three problems: minimizing a linear objective function of the new and handoff call blocking probabilities (MINOBJ), minimizing the new call blocking probability with a hard constraint on the handoff call blocking probability (MINBLOCK) and minimizing the number of channels with hard constraints on both of the blocking probabilities (MINC). We show that the well-known Guard Channel policy is optimal for the MINOBJ problem, while a new Fractional Guard Channel policy is optimal for the MINBLOCK and MINC problems. The Guard Channel policy reserves a set of channels for handoff calls while the Fractional Guard Channel policy effectively reserves a non-integral number of guard channels for handoff calls by rejecting new calls with some probability that depends on the current channel occupancy. It is also shown that the Fractional policy results in significant savings (20-50\%) in the new call blocking probability for the MINBLOCK problem and provides some, though small, gains over the Guard Channel policy for the MINC problem. Further, we also develop computationally inexpensive algorithms for the determination of the parameters for the optimal policies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
A simple connection control system for multiservice cellular wireless networks is presented. Mobile stations are classified depending on the traffic they generate (e.g., voice, data). Within each class, two subclasses are also identified: stations which have originated inside the cell and stations which come from adjacent cells. The connection control mechanism is carried out by considering a number of priorities among the various classes and their subclasses. It works on two levels: static and dynamic. The static level looks at packet-level quality of service (QoS), such as cell loss and delay, while the dynamic level takes care of connection dynamics and allows the load of the system to be driven with respect to the various subclasses. Results that illustrate the performance of this control mechanism are presented.  相似文献   

3.
On call admission control in DS/CDMA cellular networks   总被引:3,自引:0,他引:3  
Analytical models are proposed for various direct sequence code-division multiple-access (DS/CDMA) call admission control schemes. Many mathematical call admission models for DS/CDMA cellular networks have been proposed. However, they have shortcomings. First, by ignoring the stochastic traffic load variation or call blocking effect, they failed to sufficiently characterize the second moment of other-cell interference. This leads to inaccurate analysis of a real network. Second, the optimal control parameters were often obtained through an exhaustive search which was very time consuming. Finally, the estimation of system capacity in previous models was obtained by using a simple one-slope path-loss propagation model. However, it is well known that a two-slope path loss propagation model is needed in a line-of-sight (LOS) microcell propagation environment. We propose an analytical model for call admission to overcome these drawbacks. In addition, we combine a modified linear programming technique with the built analytical model to find better call admission control schemes for a DS/CDMA cellular network  相似文献   

4.
无线网络中由于用户的移动性、频谱资源的缺乏以及信道的衰落,使无线网络的服务质量的供给成为一个日益严峻的问题。呼叫允许控制(CAC)是无线资源管理中的重要组成部分,是一种保证服务质量和网络资源利用率的重要机制。总结了CAC领域的研究成果,对蜂窝无线通信网络的CAC方案进行了分析,指出了目前CAC研究中存在的问题,并探讨了今后的研究方向。  相似文献   

5.
SIR-based call admission control for DS-CDMA cellular systems   总被引:25,自引:0,他引:25  
Signal-to-interference ratio (SIR)-based call admission control (CAC) algorithms are proposed and studied in a DS-CDMA cellular system. Residual capacity is introduced as the additional number of initial calls a base station can accept such that system-wide outage probability will be guaranteed to remain below a certain level. The residual capacity at each cell is updated dynamically according to the reverse-link SIR measurements at the base station. A 2k factorial experimental design and analysis via computer simulations is used to study the impact of the parameters used in the algorithms. The influence of these parameters on system performance, namely blocking probability and outage probability, is then examined via simulation. The performance of the algorithms is compared together with that of a fixed call admission control scheme (fixed CAC) under both homogeneous and hot spot traffic loading. The results show that SIR-based CAC always outperforms fixed CAC even under overload situations, which is not the case in FDMA/TDMA cellular systems. The primary benefit of SIR-based CAC in DS-CDMA cellular systems, however, lies in improving the system performance under hot spot traffic  相似文献   

6.
Real-time communication in packet-switched networks   总被引:4,自引:0,他引:4  
The dramatically increased bandwidths and processing capabilities of future high-speed networks make possible many distributed real-time applications, such as sensor-based applications and multimedia services. Since these applications will have traffic characteristics and performance requirements that differ dramatically from those of current data-oriented applications, new communication network architectures, and protocols will be required. In this paper we discuss the performance requirements and traffic characteristics of various real-time applications, survey recent developments in the areas of network architecture and protocols for supporting real-time services, and develop frameworks in which these, and future, research efforts can be considered  相似文献   

7.
A call admission control scheme is proposed for real-time services in packet-switched orthogonal frequency division multiplexing (OFDM) wireless cellular networks. The main idea of the proposed scheme is to use maximum acceptance ratio to maintain maximum channel utilization for real-time services according to the desired packet-level and call- level quality-of-service (QoS) requirements. The acceptance ratio is periodically adjusted by using a time discrete Markov chain and Wiener prediction theory according to the varying traffic load. Extensive simulation results show that this algorithm maintains high channel utilization, even as it guarantees packet-level and call-level QoS requirements for real-time services.  相似文献   

8.
We discuss the architecture and technical viability of transporting real-time voice over packet-switched networks such as the Internet. The value of integrating voice and data networks onto a common platform is well known. The telephony industry has proposed the ATM standard as a means of upgrading the Internet to provide both real-time and data services. In contrast, voice services may be added to traditional IP networks that were originally designed for data transmission alone. We consider the feasibility and expected quality of service of audio applications over IP networks such as the Internet. In particular, we examine possible architectures for voice over IP and discuss measured Internet delay and loss characteristics  相似文献   

9.
Dynamic call admission control in ATM networks   总被引:5,自引:0,他引:5  
The authors present dynamic call admission control using the distribution of the number of cells arriving during the fixed interval. This distribution is estimated from the measured number of cells arriving at the output buffer during the fixed interval and traffic parameters specified by users. Call acceptance is decided on the basis of online evaluation of the upper bound of cell loss probability, derived from the estimated distribution of the number of calls arriving. QOS (quality of service) standards can be guaranteed using this control when there is no estimation error. The control mechanism is effective when the number of call classes is large. It tolerates loose bandwidth enforcement and loose policing control, and dispenses with modeling of the arrival processes. Numerical examples demonstrate the effectiveness of this control, and implementation is also discussed  相似文献   

10.
Resource allocation and call admission control (CAC) are key management functions in future cellular networks, in order to provide multimedia applications to mobiles users with quality of service (QoS) guarantees and efficient resource utilization. In this paper, we propose and analyze a priority based resource sharing scheme for voice/data integrated cellular networks. The unique features of the proposed scheme are that 1) the maximum resource utilization can be achieved, since all the leftover capacity after serving the high priority voice traffic can be utilized by the data traffic; 2) a Markovian model for the proposed scheme is established, which takes account of the complex interaction of voice and data traffic sharing the total resources; 3) optimal CAC parameters for both voice and data calls are determined, from the perspective of minimizing resource requirement and maximizing new call admission rate, respectively; 4) load adaption and bandwidth allocation adjustment policies are proposed for adaptive CAC to cope with traffic load variations in a wireless mobile environment. Numerical results demonstrate that the proposed CAC scheme is able to simultaneously provide satisfactory QoS to both voice and data users and maintain a relatively high resource utilization in a dynamic traffic load environment. The recent measurement-based modeling shows that the Internet data file size follows a lognormal distribution, instead of the exponential distribution used in our analysis. We use computer simulations to demonstrate that the impact of the lognormal distribution can be compensated for by conservatively applying the Markovian analysis results.  相似文献   

11.
Wireless Broadband Cognitive Networks (WBCN) are new trend to better utilization of spectrum and resources. However, in multiservice WBCN networks, call admission control (CAC) is a challenging point to effectively control different traffic loads and prevent the network from being overloaded and thus provide promised quality of service. In this paper, we propose a CAC framework and formulate it as an optimization problem, where the demands of both WBCN service providers and cognitive subscribers are taken into account. To solve the optimization problem, we developed an opportunistic multivariate CAC algorithm based on a joint optimization of utility, weighted fairness, and greedy revenue algorithms. Extensive simulation results show that, the proposed call admission control framework can meet the expectations of both service providers and subscribers in wireless broadband cognitive networks.  相似文献   

12.
An adaptive call admission control using neural networks was recently proposed for asynchronous transfer mode (ATM) communications networks. The author proposes adaptive link capacity control using neural networks. Neural networks are trained to estimate the call loss rate from link capacity and observed traffic, and link capacity assignment is optimized by a random optimization method according to the estimated call loss rate. The integration of adaptive call admission control and adaptive link capacity control yields an efficient ATM traffic control system suitable for multimedia communication services with unknown traffic characteristics. Computer simulation results using a simple network model are also given to evaluate the accuracy and efficiency of the proposed method  相似文献   

13.
A new probabilistic call admission control scheme is proposed for multiservice wireless networks. The new scheme gradually suppresses the admission rate of the new calls and of the calls of each service class (SC) supported considering their priorities independently. The scheme is examined both for a single SC and for multiple SCs under general conditions. The analysis employs Markov chain theory and yields analytical expressions for the call blocking probabilities. The proposed analytical method was validated via simulations employing different distributions for the channel holding time; the simulations demonstrated the accuracy of the proposed framework.  相似文献   

14.
15.
An efficient call admission control scheme for handling heterogeneous services in wireless ATM networks is proposed. Quality-of-service provisioning of jitter bounds for constant bit rate traffic and delay bounds for variable bit rate traffic is used in the CAC scheme to guarantee predefined QoS levels for all traffic classes. To reduce the forced handoff call dropping rate, the CAC scheme gives handoff calls a higher priority than new calls by reserving an appropriate amount of resources for potential handoff calls. Resource reservation in the CAC scheme makes use of user mobility information to ensure efficient resource utilization. Simulation results show that the proposed CAC scheme can achieve both low handoff call dropping rate and high resource utilization  相似文献   

16.
Distributed call admission control in mobile/wireless networks   总被引:18,自引:0,他引:18  
The major focus of this paper is distributed call admission control in mobile/wireless networks, the purpose of which is to limit the call handoff dropping probability in loss systems or the cell overload probability in lossless systems. Handoff dropping or cell overload are consequences of congestion in wireless networks. Our call admission control algorithm takes into consideration the number of calls in adjacent cells, in addition to the number of calls in the cell where a new call request is made, in order to make a call admission decision. This is done by every base station in a distributed manner without the involvement of the network call processor. The admission condition is simple enough that the admission decision can be made in real time. Furthermore, we show that our distributed call admission control scheme limits the handoff dropping or the cell overload probability to a predefined level almost independent of load conditions. This is an important requirement of future wireless/mobile networks with quality-of-service (QoS) provisioning  相似文献   

17.
In this article, we propose new methods to reduce the handoff blocking probability in the 3rd Generation Partnership Project Long Term Evolution wireless networks. This reduction is based on an adaptive call admission control scheme that provides QoS guarantees and gives the priority of handoff call over new call in admission. The performance results of the proposed schemes are compared with other competing methods using simulation analysis. Simulation results show the major impact on the performance of the 3rd Generation Partnership Project Long Term Evolution network, which is reflected in increased resource utilization ratio to (99%) and in the ability in satisfying the requirements of QoS in terms of call blocking probability (less than 0.0628 for Voice over IP service) and dropping probability rate (less than 0.0558).Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper proposes a QoS approach for an adaptive call admission control (CAC) scheme for multiclass service wireless cellular networks. The QoS of the proposed CAC scheme is achieved through call bandwidth borrowing and call preemption techniques according to the priorities of the traffic classes, using complete sharing of the available bandwidth. The CAC scheme maintains QoS in each class to avoid performance deterioration through mechanisms for call bandwidth degradation, and call bandwidth upgrading based on min–max and max–min policies for fair resource deallocation and reallocation, respectively. The proposed adaptive CAC scheme utilizes a measurement‐based online monitoring approach of the system performance, and a prediction model to determine the amount of bandwidth to be borrowed from calls, or the amount of bandwidth to be returned to calls. The simulation‐based performance evaluation of the proposed adaptive CAC scheme shows the strength and effectiveness of our proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In wireless cellular communication systems, call admission control (CAC) is to ensure satisfactory services for mobile users and maximize the utilization of the limited radio spectrum. In this paper, we propose a new CAC scheme for a code division multiple access (CDMA) wireless cellular network supporting heterogeneous self-similar data traffic. In addition to ensuring transmission accuracy at the bit level, the CAC scheme guarantees service requirements at both the call level and the packet level. The grade of service (GoS) at the call level and the quality of service (QoS) at the packet level are evaluated using the handoff call dropping probability and the packet transmission delay, respectively. The effective bandwidth approach for data traffic is applied to guarantee QoS requirements. Handoff probability and cell overload probability are derived via the traffic aggregation method. The two probabilities are used to determine the handoff call dropping probability, and the GoS requirement can be guaranteed on a per call basis. Numerical analysis and computer simulation results demonstrate that the proposed CAC scheme can meet both QoS and GoS requirements and achieve efficient resource utilization.  相似文献   

20.
We study the mobile admission control problem in a cellular PCS network where transmitter powers are constrained and controlled by a distributed constrained power control (DCPC) algorithm. Receivers are subject to nonnegligible noise, and the DCPC attempts to bring each receiver's CIR (carrier-to-interference ratio) above a given quality target. Two classes of distributed admission control are considered. One is a noninteractive admission control (N-IAC), where an admission decision is instantaneously made based on the system state. The other is an interactive admission control (IAC), under which the new mobile is permitted to interact with one or more potential channels before a decision is made. The algorithms are evaluated with respect to their execution time and their decision errors. Two types of errors are examined: type I error, where a new mobile is erroneously accepted and results in outage; and type II error, where a new mobile is erroneously rejected and results in blocking. The algorithms in the N-IAC class accept a new mobile if and only if the uplink and the downlink interferences are below certain corresponding thresholds. These algorithms are subject to errors of type I and type II. In the IAC class, we derive a soft and safe (SAS) admission algorithm, which is type I and type II error free, and protects the CIR's of all active links at any moment of time. A fast-SAS version, which is only type I error-free, is proposed for practical implementation, and is evaluated in several case studies  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号