首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density differences are the key parameter for stratification stability. We used data from the iron-meromictic Waldsee, Germany, a lignite mine pit lake, to quantify the contribution of single solutes to water density and analyzed the density gradient. Iron meromictic lakes maintain their density gradient through chemical reactions. Hence, quantifying the contributions of separate solutes is essential for understanding the entire process. Based on solute concentrations and literature values of partial molal volumes, substance specific density contributions were quantitatively evaluated. Then, by direct measurements of the density of IHSS Waskish peat fulvic acid, we quantified the density contribution of dissolved organic carbon (DOC). While several solutes contributed to the density throughout the water column, only those substances that occurred at higher concentrations in the anoxic monimolimnion than in the oxic mixolimnion were crucial to sustaining the density difference between the two layers. In Waldsee, the density difference between monimolimnion and mixolimnion was attributed to dissolved Fe2+ (0.23?g/L, resulting in a 45?% of the density difference due to solutes) and to the carbonate system (HCO3 ?, about 0.16?g/L and CO2, 0.03?g/L) while Ca2+ and DOC delivered only a small contribution. In summer, total density differences were dominated by temperature differences; during winter, solutes sustained meromixis. Finally, we present a complete list of specific density fractions for basically all of the density-relevant substances in fresh waters.  相似文献   

2.
Pit lakes present a concern for public safety and environmental quality. With continuing advancement of imaging satellites, remote sensing spectroscopy may provide a useful tool for monitoring pit water quality across vast mining districts. Visible to shortwave infrared remote sensing has been widely used to monitor acid mine drainage (AMD) mineralogy at mine sites. However, few studies have examined the spectral signatures of mine-affected waters and open pit water bodies from a remote platform. The motivation for this study was to identify the spectral characteristics of AMD in a controlled laboratory setting in order to better interpret mine water bodies in remote sensing imagery. The spectral response of synthetic and local AMD were measured using a field spectrometer. Solutions with increasing Fe3+ and Fe2+ concentrations were mixed to mimic the chemical properties of local AMD. Synthetic solutions with known Fe concentrations were compared with local AMD for quantitative assessment. The spectral signatures of Fe3+ dominated waters possessed distinct characteristics that may be used for diagnostic identification. Specifically, the region between 0.35 and 0.625 µm was used to approximately quantify Fe3+ concentrations. Subtle changes in Fe concentrations in local AMD were identified using a field spectrometer alone. These findings suggest that subtle changes in open pit water quality may also be qualitatively and quantitatively measured by remote sensing spectroscopy.  相似文献   

3.
Abstract.  The Berkeley pit lake in Butte, Montana is one of the largest accumulations of acid mine drainage in the world. The pit lake began filling in 1983, and continues to fill at a rate of roughly 10 million liters d-1. This paper details how changes in mining activities have led to changes in the rate of filling of the pit lake, as well as changes in its limnology and geochemistry. As of 2005, the Berkeley pit lake is meromictic, with lower conductivity water resting on top of higher conductivity water. This permanent stratification was set up by diversion of surface water—the so-called Horseshoe Bend Spring—into the pit during the period 2000 to 2003. However, the lake may have been holomictic prior to 2000, with seasonal top-to-bottom turnover events. The present mining company is pumping water from below the chemocline to a copper precipitation plant, after which time the Cu-depleted and Fe-enriched water is returned to the pit. Continued operation of this facility may eventually change the density gradient of the lake, with a return to holomictic conditions. A conceptual model illustrating some of the various physical, chemical, and microbial processes responsible for the unusually poor water quality of the Berkeley pit lake is presented.  相似文献   

4.

The aim of this work was to determine which parameters are sufficient to measure in order to describe the water quality of a pit lake and to identify patterns in the data among different kind of pit lakes. The data consisted of ambient dose equivalent rate, elemental and radionuclide concentration, pH, and specific conductance in surface water and sediment samples collected from different types of mines. Data were tested for normality and log-normality and used in principal component analysis (PCA) and hierarchical cluster analysis (HCA). The normality tests indicated that only 40K was normally distributed, while only the 234,238U isotopes were log-normally distributed. HCA performed on parameters measured in surface water provided clusters that in most cases separated the elements according to their chemical groups. However, when HCA was performed on pit lakes, the clustering seemed to indicate that surface water might not be the preferred sample to differentiate between different types of pit lakes. PCA of surface water data resulted in three components that explained 72% of the variance when pH, SC, concentration of the elements Mg, K, Ca, Cu, Zn, Sr, Pb, activity concentration of 234,238U and 210Po, and ambient dose equivalent rate were included. For surface sediment data, the PCA resulted in three components explaining 83% of the variance when the concentration of Na, Mg, Al, P, K, Ca, Rb, Sr, Y, Tl, activity concentration of 234Th, 226Ra, 210Pb, 232Th (series average), and 40K, and ambient dose equivalent rate were included.

  相似文献   

5.

Mine waters are a significant point source stressor for aquatic environments, not only due to their acidity and high metal concentrations, but also because of their high electrolyte concentrations. Ion-rich mine waters can disturb the seasonal mixing of lake waters, even leading to permanent stratification, i.e. meromixis. In this study, we investigated two small natural lakes receiving waters from closed Ni-Cu mines. To characterize the present chemical and physical conditions of these two boreal lakes, we collected water samples and in-situ water column measurements seasonally in 2017 and 2018. We modelled the stability of meromixis in the lakes under varying physico-chemical and meteorological conditions with the MATLAB-based open-source model code, MyLake. Chemical analyses and water column measurements show that both lakes are currently meromictic with a chemocline separating the circulating, well-oxygenated upper water from the non-circulating, hypoxic bottom water. The main anion was SO4 in both lakes, while the main cations were Ca, Mg, Na, and K. Elevated concentrations of conservative elements flowing from the mine areas are crucial in maintaining the meromixis. Modelling scenarios suggest that the meromixis would be sustained for several decades even if the external load ceased completely. Lake morphology and sheltered surroundings also seem to contribute to maintaining the meromixis in these lakes. Consequently, our results indicate that small headwaters are sensitive to persistent meromixis even when external loading is mild.

  相似文献   

6.
Abstract.  The basic chemical properties of Tertiary (T) and Quaternary (Q) aquifers near the Piaseczno opencast sulphur mine and the water in the open pit, along with the stratigraphy and hydrogeology of the area, were characterized to assess the feasibility of inundating the mine with ground water. Ground water quality varied markedly in the opencast area. A distinct stratification was noted in the pit water; total dissolved solids, calcium, chloride, hardness, and hydrogen sulphide increased from the top water level to the bottom of the pit lake. The concentrations of SO42- and Cl- in the opencast water were very high, especially in the hypolimnion zone. Based on our preliminary analysis, it appears that an artificial lake formed in the Piaseczno open pit could be used in the future as a fish and wildlife habitat as well as for recreational purposes.  相似文献   

7.
Pit lake waters are often contaminated by acid mine drainage (AMD) from weathering of pyritic materials exposed by mining operations, leading to low pH, and high solute and heavy metal concentrations. Few cost-effective engineering solutions exist for large-scale environmental remediation of AMD-contaminated pit lakes. However, various studies have demonstrated that biological remediation strategies for remediating AMD-contaminated waters, including microbially-mediated sulphate reduction, show promise at the laboratory-scale. The addition of acidic mine water to raw sewage and workshop wastewaters in an evaporation pond provided an opportunity for a field-scale experiment as essentially a reversal of suggested in-situ treatment of acidic pit lakes by addition of organic carbon. The hyper-eutrophic evaporation pond initially contained high concentrations of nutrients, a pH > 8, high levels of sulphate (500 mg L−1), and had regular algal blooms. Soon after the addition of the AMD pit water, the evaporation pond pH fell to 2.4, and electrical conductivity (EC) and most metal concentrations were elevated by one to two orders of magnitude. Over the following 18 months, the pH of the pond increased and the EC and metal concentrations decreased. After only 18 months of addition of AMD, pond water quality had returned to a level similar to that before AMD addition. These observations suggest that addition of low-grade organic materials shows promise for remediation of acid mine waters at field scale and warrants experimental investigation. An erratum to this article can be found at  相似文献   

8.
Mine void pit lakes often contain water of poor quality with potential for environmental harm that may dwarf other mine closure environmental issues in terms of severity, scope, and longevity. This is particularly so when many pit lakes occur close together and thus form a new “lake district” landscape. Pit lakes that can be developed into healthy lake or wetland ecosystems as a beneficial end use provide opportunities for the mining industry to fulfil commitments to sustainability. Clearly articulated restoration goals and a strategic closure plan are necessary to ensure pit lake restoration toward a new, yet regionally-relevant, aquatic ecosystem, which can achieve sustainability as an out-of-kind environmental offset. Such an approach must also consider obstacles to development of a self-sustaining aquatic ecosystem, such as water quality and ecological requirements. We recommend integration of pit lakes into their catchments as a landscape restoration planning exercise with clearly-identified roles and objectives for each new lake habitat and its surrounds.  相似文献   

9.
This report evaluates the results of a continuous 4.5-day laboratory aeration experiment and the first year of passive, aerobic treatment of abandoned mine drainage (AMD) from a typical flooded underground anthracite mine in eastern Pennsylvania, USA. During 1991–2006, the AMD source, locally known as the Otto Discharge, had flows from 20 to 270 L/s (median 92 L/s) and water quality that was consistently suboxic (median 0.9 mg/L O2) and circumneutral (pH ≈ 6.0; net alkalinity >10) with moderate concentrations of dissolved iron and manganese and low concentrations of dissolved aluminum (medians of 11, 2.2, and <0.2 mg/L, respectively). In 2001, the laboratory aeration experiment demonstrated rapid oxidation of ferrous iron (Fe2+) without supplemental alkalinity; the initial Fe2+ concentration of 16.4 mg/L decreased to less than 0.5 mg/L within 24 h; pH values increased rapidly from 5.8 to 7.2, ultimately attaining a steady-state value of 7.5. The increased pH coincided with a rapid decrease in the partial pressure of carbon dioxide (PCO2) from an initial value of 10−1.1 atm to a steady-state value of 10−3.1 atm. From these results, a staged aerobic treatment system was conceptualized consisting of a 2 m deep pond with innovative aeration and recirculation to promote rapid oxidation of Fe2+, two 0.3 m deep wetlands to facilitate iron solids removal, and a supplemental oxic limestone drain for dissolved manganese and trace-metal removal. The system was constructed, but without the aeration mechanism, and began operation in June 2005. During the first 12 months of operation, estimated detention times in the treatment system ranged from 9 to 38 h. However, in contrast with 80–100% removal of Fe2+ over similar elapsed times during the laboratory aeration experiment, the treatment system typically removed less than 35% of the influent Fe2+. Although concentrations of dissolved CO2 decreased progressively within the treatment system, the PCO2 values for treated effluent remained elevated (10−2.4 to 10−1.7 atm). The elevated PCO2 maintained the pH within the system at values less than 7 and hence slowed the rate of Fe2+ oxidation compared to the aeration experiment. Kinetic models of Fe2+ oxidation that consider effects of pH and dissolved O2 were incorporated in the geochemical computer program PHREEQC to evaluate the effects of detention time, pH, and other variables on Fe2+ oxidation and removal rates. These models and the laboratory aeration experiment indicate that performance of this and other aerobic wetlands for treatment of net-alkaline AMD could be improved by aggressive, continuous aeration in the initial stage to decrease PCO2, increase pH, and accelerate Fe2+ oxidation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Uranium leaching tests were conducted on two naturally occurring, highly metamict brannerite ores from the Crockers Well and Roxby Downs deposits, South Australia. The ores were leached over a range of temperatures and Fe(III) and H2SO4 concentrations. As well, samples of the ores were calcined at 1200 °C in air to investigate the effect of thermally induced recrystallisation on uranium dissolution. For the unheated samples, a maximum of ∼80% U dissolution was obtained using an Fe(III) concentration of 12 g/L, an acid concentration of 150 g/L H2SO4 and a temperature of 95 °C. The heat treated samples performed poorly under identical conditions, with maximum uranium dissolution of <10% recorded. High uranium dissolution from natural brannerite can be achieved providing; (i) acid strength, oxidant strength and temperatures are maintained at elevated levels (compared to those traditionally used for uraninite leaching), and, (ii) the brannerite has not undergone any significant recrystallisation (e.g. through metamorphism).  相似文献   

11.
12.
We examine the origin of acid mine drainage (AMD) that forms within coal refuse (gob) piles at the Green Valley and Friar Tuck sites in Indiana, using microbiology, traditional geochemistry, and oxygen and hydrogen isotopes. Reducing the AMD load from these sites has been an historical priority. Our observations indicate that AMD generation at these sites in Indiana is driven by three complementary factors: elevated populations of chemolithotrophic microbes of the species Acidithiobacillus ferrooxidans; a growth substrate that provides ‘food’ (e.g. pyrite) for these microbes, and a gob pile with geometry and other properties conducive to maintaining the thermal window of 25–40°C for optimal A. ferrooxidans growth. In particular, increasing levels of Fe+3 and total dissolved solids (TDS), and decreasing pH for gob waters were found to be highly correlated with increasing populations of A. ferrooxidans. Furthermore, the chemosythetic bacteria population increase correlates with increasing hydrogen stable isotope shift away from the global meteoric water line for gob waters in this study, though it is unclear if this shift is the result of microbial metabolic processes or a secondary effect due to microbially-mediated pH change or electrolysis.  相似文献   

13.
The process for extraction of hydrogen cyanide to decontaminate solutions produced at cyaniding of sulfide flotation concentrates is developed. The centrifugal-bubbling apparatus is employed as a reactor. The regularities of HCN formation in an acid medium are established in investigation into kinetics of SCN thiocyanate oxidation by hydrogen peroxide H2O2 in presence of Fe2+, Fe3+ and pH ≤ 3.5. In the process proposed the evolved HCN is adsorbed by NaOH solution and returned to the circuit of leaching of gold and silver as NaCN, and the waste cyaniding solution is discharged into a waste dump, where it is mixed with industrial water to be utilized to transport flotation tailings. __________ Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 1, pp. 98–105, January–February, 2009.  相似文献   

14.
Abstract.  Due to operational and regulatory practicalities, pit lakes will continue to be common legacies of mine lease relinquishments. Unplanned or inappropriate management of these geographical features can lead to both short- and long-term liability to mining companies, local communities, and the nearby environment during mining operations or after lease relinquishment. However, the potential for pit lakes to provide benefit to companies, communities, and the environment is frequently unrecognised and yet may be a vital contribution to the sustainability of the open-cut mining industry. Sustainable pit lake management aims to minimise short and long term pit lake liabilities and maximise short and long term pit lake opportunities. Improved remediation technologies are offering more avenues for pit lakes resource exploitation than ever before, at the same time mining companies, local communities, and regulatory authorities are becoming more aware of the benefit these resources can offer.  相似文献   

15.
The Anna S coal mine complex in Tioga County, PA, produces drainage with a pH of 2.8–3.6 containing 3–36 mg/L Al, 1–36 mg/L Fe, and 6–9 mg/L Mn. In 2003, the Babb Creek Watershed Association installed two systems that passively treat three discharges from the mine complex. Both systems contain four parallel vertical flow ponds followed by aerobic wetlands. The vertical flow ponds contain a total of 35,483 t of limestone and 4,913 m3 of organic substrate. During the last 6 years, the systems have treated an average of 1,971 L/min of flow to neutral pH with 135–146 mg/L of alkalinity (as CaCO3), with less than 1 mg/L of Al and Fe, and 2–4 mg/L of Mn. The vertical flow ponds have generated alkalinity at rates of 32–53 g/m2/day as CaCO3. No seasonal variation in treatment effectiveness has been observed, despite relatively harsh winter seasons. The total cost of the passive systems was $2.5 million (US). The 20 year projected unit treatment cost, including periodic replacement of the organic substrate, is $2.5 million (US). The 20 year projected unit treatment cost, including periodic replacement of the organic substrate, is 403–618 per t (as CaCO3) of net alkalinity generated.  相似文献   

16.
Acidic pit lakes can form in open cut mine voids that extend below the groundwater table. The aim of this research was to determine what bulk organic material concentrations best stimulated sulphate-reducing bacteria (SRB) for acid mine drainage (AMD) treatment within a pit lake. An experiment was carried out to assess the effect of different substrate concentrations of sewage sludge on AMD bioremediation efficiency. Experimental microcosms were made of 300 mm long and 100 mm wide acrylic cores, with a total volume of 1.8 L. Four different concentrations of sewage sludge (ranging from 30 to 120 g/L) were tested. As the sewage sludge concentration increased, the bioremediation efficiency also increased, reflecting the higher organic carbon concentrations. Sewage sludge contributed alkaline materials that directly neutralised the AMD in proportion to the quantity added and therefore played a primary role in stimulating SRB bioremediation. The lowest concentration of sewage sludge (30 g/L) tested proved to be inadequate for effective SRB bioremediation. However, there were no measurable beneficial effects on SRB bioremediation efficiency when sewage sludge was added at concentrations >60 g/L. We compared our results with existing literature data to develop a conceptual model for remediation of AMD in pit lakes through organic material amendments. The model indicated that labile organic carbon availability was more important to the bioremediation rate than AMD strength, so long as iron and sulphate concentrations were not limiting. The conceptual model also indicates that bioremediation may still occur when only low concentrations of organic carbon are present in the pit lakes, albeit at a very slow rate. The model also demonstrates the presence of an organic material amendment threshold where excess organic carbon does not measurably influence the final outcome. The conceptual model defined is well supported by the results of the microcosm experiment.  相似文献   

17.
Abstract:  The net acidity of a water sample can be measured directly by titration with a standardized base solution or calculated from the measured concentrations of the acidic and basic components. For coal mine drainage, the acidic components are primarily accounted for by free protons and dissolved Fe2+, Fe3+, Al3+, and Mn2+. The base component is primarily accounted for by bicarbonate. A standard way to calculate the acidity for coal mine drainage is: Acidcalc = 50*(2*Fe2+/56 + 3*Fe3+/56 + 3*Al/27 + 2*Mn/55 + 1000*10-pH)—alkalinity, where acidity and alkalinity are measured as mg/L CaCO3 and the metals are mg/L. Because such methods of estimating acidity are derived by independent laboratory procedures, their comparison can provide a valuable QA/QC for AMD datasets. The relationship between measured and calculated acidities was evaluated for 14 datasets of samples collected from mine drainage discharges, polluted receiving streams, or passive treatment systems, containing a total of 1,484 sample analyses. The datasets were variable in nature, ranging from watersheds where most of the discharges contained alkalinity to ones where all of the discharges were acidic. Good relationships were found to exist between measured and calculated acidities. The average acidity measurement was 239 mg/L CaCO3 and the average acidity calculation was 226 mg/L CaCO3. Linear regressions were calculated for individual datasets and for the entire dataset. The linear regression for the entire dataset was: Acidcalc = 0.98 * Acidmeas – 8, r2 = 0.98. The good correlation between calculated and measured acidity is the basis for an easy and inexpensive QA/QC for AMD data. Substantial variation between measured and calculated acidities can be used to infer sampling or analytical problems.  相似文献   

18.
19.
This study examines the leaching of copper from waste electric cables by chemical leaching and leaching catalysed by Acidithiobacillus ferrooxidans in terms of leaching kinetics and reagents consumption. Operational parameters such as the nature of the oxidant (Fe3+, O2), the initial ferric iron concentration (0–10 g/L) and the temperature (21–50 °C) were identified to have an important influence on the degree of copper solubilisation. At optimal process conditions, copper extraction above 90% was achieved in both leaching systems, with a leaching duration of 1 day. The bacterial leaching system slightly outperformed the chemical one but the positive effect of regeneration of Fe3+ was limited. It appears that the Fe2+ bio-oxidation is not sufficiently optimised. Best results in terms of copper solubilisation kinetics were obtained for the abiotic test at 50 °C and for the biotic test at 35 °C. Moreover, the study showed that in same operating conditions, a lower acid consumption was recorded for the biotic test than for the abiotic test.  相似文献   

20.
鲁南矿业王峪矿段深凹露天矿闭坑后,由于矿区尾矿库的库容不足,提出了露天坑底部排放尾砂的工艺。通过ABAQUS大型有限元数值软件,模拟了露天坑采结束-坑底干排尾砂-露天转地下第一阶段采矿全过程,分析了露天边坡位移变化趋势以及露天转地下采区的应力分布情况,得出结论:露天坑底排尾砂后地下开采区域应力场没有明显的增加,同时围岩体的塑性区域没有贯通;原露天边坡的水平与竖直位移均在可控范围内。并针对露天转地下过程中坑底积水情况,提出了工程上的防排渗措施,具有较好的工程参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号