首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The triacylglycerols (TAG) containing dihydroxy fatty acids have been recently identified by mass spectrometry in castor oil. These new dihydroxy fatty acids were proposed as 11,12-dihydroxy-9-octadecenoic acid (diOH18:1), 11,12-dihydroxy-9,13-octadecadienoic acid (diOH18:2) and 11,12-dihydroxyoctadecanoic acid (diOH18:0). The ratios of regioisomers of the TAG were estimated by fragment ions from the loss of fatty acids at the sn-2 position as α,β-unsaturated fatty acids by electro spray ionization-mass spectrometry of the lithium adducts (MS3). The content of regioisomeric diOH18:1-OH18:1-diOH18:1 (ABA, with two different fatty acids) was about 92% in the total of stereoisomeric diOH18:1-OH18:1-diOH18:1, OH18:1-diOH18:1-diOH18:1 and diOH18:1-diOH18:1-OH18:1 combined. The approximate contents of other regioisomers were as follows: diOH18:1-OH18:1-OH18:1 (92%), diOH18:1-diOH18:0-diOH18:1 (91%), diOH18:2-OH18:1-OH18:1 (80%) and diOH18:0-OH18:1-OH18:1 (96%). The ratios of regioisomers of TAG (ABC) containing three different fatty acids were estimated as about 7:1:2 (OH18:1:diOH18:1:diOH18:2) and about 7:2:1 (OH18:1:diOH18:0:diOH18:1). Ricinoleate (OH18:1) was predominately at the sn-2 position of TAG (both AAB and ABC) containing dihydroxy fatty acids and ricinoleate. Dihydroxy fatty acids were mainly at the sn-1,3 positions of TAG containing dihydroxy fatty acids and ricinoleate in castor oil. The ratios of the three regioisomers of TAG (ABC) containing three different fatty acids by mass spectrometry are first reported here.  相似文献   

2.
The ratios of regioisomers of 72 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lesquerella oil. The ratios of ion signal intensities (or relative abundances) of the fragment ions from the neutral losses of fatty acids (FA) as α‐lactones at the sn‐2 position (MS3) of the molecular species of TAG were used as the ratios of the regioisomers. The order of the preference of FA incorporation at the sn‐2 position of the molecular species of TAG in lesquerella was as: normal FA > OH18 (monohydroxy FA with 18 carbon atoms) > diOH18 > OH20 > diOH20, while in castor was as: normal FA > OH18 > OH20 > diOH18 > triOH18. Elongation (from C18 to C20) was more effective than hydroxylation in lesquerella to incorporate hydroxy FA at the sn‐1/3 positions. The block of elongation in lesquerella may be used to increase the content of hydroxy FA, e.g., ricinoleate, at the sn‐2 position of TAG and to produce triricinolein (or castor oil) for industrial uses. The content of normal FA at the sn‐2 position was about 95 %, mainly oleate (38 %), linolenate (31 %) and linoleate (23 %). This high normal FA content (95 %) at the sn‐2 position was a big space for the replacement of ricinoleate to increase the hydroxy FA content in lesquerella oil. The content of hydroxy FA at the sn‐1/3 positions was 91 % mainly lesquerolic acid (85 %) and the content of normal FA was 6.7 % at the sn‐1/3 position in lesquerella oil.  相似文献   

3.
Castor oil can be used in industry. The molecular species of triacylglycerols containing hydroxy fatty acids (FA) in castor oil have been identified. We report here the identification of twelve diacylglycerols (DAG) containing hydroxy FA in castor oil using positive ion electrospray ionization mass spectrometry of the lithium adducts. They were RR (diricinolein, R is ricinoleate), RL, RS, R‐diOH18:0, R‐diOH18:1, R‐diOH18:2, R‐triOH18:0, R‐triOH18:1, R‐triOH18:2, diOH18:0‐diOH18:1, diOH18:1‐diOH18:1 and diOH18:1‐diOH18:2. The MS2 fragment ions, [M + Li ? FA]+ and [FA + Li]+, from the lithium adducts of DAG containing hydroxy FA (one or two hydroxy FA), were used for the identification. The additional fragment ions from the neutral losses of FA lithium salts [M + Li ? FALi]+ were used for the identification of eleven DAG containing two normal FA in a soybean oil bioconversion product. The MS2 fragment ions from the neutral losses of FA lithium salts [M + Li ? FALi]+ were not detected from the DAG containing hydroxy FA. The DAG containing FA with more hydroxyl groups than the other FA on the same DAG molecule tended to have a prominent fragment ion [FA + Li]+ and an undetectable fragment ion [M + Li ? FA]+ while the FA was the more hydroxylated FA. Also the less hydroxylated FA of a DAG tended to have a prominent fragment ion [M + Li ? FA]+ and an undetectable fragment ion [FA + Li]+ while the FA was the less hydroxylated FA.  相似文献   

4.
Ricinoleate, a monohydroxy fatty acid, in castor oil has many industrial uses. Dihydroxy fatty acids can also be used in industry. The C18 HPLC fractions of castor oil were analyzed by electrospray ionization mass spectrometry of lithium adducts to identify the acylglycerols containing dihydroxy fatty acids and the dihydroxy fatty acids. Four diacylglycerols identified were diOH18:1-diOH18:1, diOH18:2-OH18:1, diOH18:1-OH18:1 and diOH18:0-OH18:1. Eight triacylglycerols identified were diOH18:1-diOH18:1-diOH18:1, diOH18:1-diOH18:1-diOH18:0, diOH18:2-diOH18:1-OH18:1, diOH18:1-diOH18:1-OH18:1, diOH18:1-diOH18:0-OH18:1, diOH18:2-OH18:1-OH18:1, diOH18:1-OH18:1-OH18:1 and diOH18:0-OH18:1-OH18:1. The locations of fatty acids on the glycerol backbone were not determined. The structures of these three newly identified dihydroxy fatty acids were proposed as 11,12-dihydroxy-9-octadecenoic acid, 11,12-dihydroxy-9,13-octadecadienoic acid and 11,12-dihydroxyoctadecanoic acid. These individual acylglycerols were at the levels of about 0.5% or less in castor oil and can be isolated from castor oil or overproduced in a transgenic oil seed plant for future industrial uses.  相似文献   

5.
Castor oil has many industrial uses because of its high content (90 %) of the hydroxy fatty acid, ricinoleic acid (OH1218:19). Lesquerella oil containing lesquerolic acid (Ls, OH1420:111) is potentially useful in industry. Ten molecular species of diacylglycerols and 74 molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil were identified by electrospray ionization mass spectrometry as lithium adducts of acylglycerols in the HPLC fractions of lesquerella oil. Among them were: LsLsO, LsLsLn, LsLsL, LsLn–OH20:2, LsO–OH20:2 and LsL–OH20:2. The structures of the four new hydroxy fatty acid constituents of acylglycerols were proposed by the MS of the lithium adducts of fatty acids as (comparing to those in castor oil): OH1218:29,14 (OH1218:29,13 in castor oil), OH1218:39,14,16 (OH18:3 not detected in castor oil), diOH12,1318:29,14 (diOH11,1218:29,13 in castor oil) and diOH13,1420:111 (diOH20:1 not detected in castor oil, diOH11,1218:19 in castor oil). Trihydroxy fatty acids were not detected in lesquerella oil. The differences in the structures of these C18 hydroxy fatty acids between lesquerella and castor oils indicated that the polyhydroxy fatty acids were biosynthesized and were not the result of autoxidation products.  相似文献   

6.
Changes in composition were examined in oils extracted from genetically modified sunflower and soybean seeds. Improvements were made to the analytical methods to accomplish these analyses successfully. Triacylglycerols (TAG) were separated on two 300 mm × 3.9 mm 4μ Novapak C18 high-performance liquid chromatography (HPLC) columns and detected with a Varex MKIII evaporative light-scattering detector. Peaks were identified by coelution with known standards or by determining fatty acid composition of eluted TAG by capillary gas chromatography (GC). Stereospecific analysis (fatty acid position) was accomplished by partially hydrolyzing TAG with ethyl magnesium bromide and immediately derivatizing the resulting diacylglycerols (DAG) with (S)-(+)-1-(1-naphthyl)ethyl isocyanate. The derivatized sn-1,2-DAG were completely resolved from the sn-2,3-DAG on two 25 mm × 4.6 mm 3 μ silica HPLC columns. The columns were chilled to −20°C to obtain baseline resolution of collected peaks. The distribution of fatty acids on each position of the glycerol backbone was derived from the fatty acid compositions of the two DAG groups and the unhydrolyzed oil. Results for the sn-2 position were verified by hydrolyzing oils with porcine pancreatic lipase, isolating the resulting sn-2 monoacylglycerols by TLC, and determining the fatty acid compositions by GC. Results demonstrated that alterations in the total fatty acid composition of these seed oils are determined by the concentration of TAG species that contain at least one of the modified acyl groups. As expected, no differences were found in TAG with fatty acid quantities unaffected by the specific mutation. In lieu of direct metabolic or enzymatic assay evidence, the authors’ positional data are nevertheless consistent with TAG biosynthesis in these lines being driven by the mass action of available acyl groups and not by altered specificity of the acyltransferases, the compounds responsible for incorporating fatty acids into TAG.  相似文献   

7.
The use of HPLC-MS to separate and identify the feruloylated acylglycerols formed during the transesterification of ethyl ferulate with TAG was examined. Novozym 435 (Candida antarctica lipase B)-catalyzed transesterifications of ethyl ferulate and soybean oil resulted in a mixture of feruloylated MAG, DAG, and TAG and diferuloylated DAG and TAG. These feruloylated acylglycerols have recently garnered much interest as cosmeceutical ingredients. The ratio of the various feruloylated acylglycerol species in the resultant oils is presumed to affect the oil's cosmetic efficacy as well as its physical (formulation) properties. Thus, it was desirable to develop an analytical method to separate, identify, and quantify the individual feruloylated acylglycerols to determine their relative ratios. The feruloylated acylglycerols were successfully separated and identified by HPLC-MS using a phenyl-hexyl reversed-phase column developed with a water/methanol/1-butanol gradient. The chromatograms of the feruloylated acylglycerols from soybean oil were convoluted by myriad fatty acids; therefore, feruloylated acylglycerols from triolein were studied as a model reaction. Hydrolysis of the feruloylated acylglycerols from triolein catalyzed by Lipase PS-C “Amano” I (Burkholderia cepacia), which showed no hydrolysis reactivity toward ethyl ferulate, allowed for the chromatographic assignment of the feruloyl acylglycerol positional isomers.  相似文献   

8.
Triacylglycerols (TAG) were purified from the storage lipids extracted from the seeds of several conifer species (Taxus baccata, Larix decidua, Sciadopytis verticillata, and Juniperus communis), each species belonging to one of the four families Taxaceae, Pinaceae, Taxodiaceae, and Cupressaceae, respectively. Each species was characterized by a high content of 5,9-18:2, 5,9,12-18:3, 5,11,14-20:3, or 5,11,14,17-20:4 acids, respectively. TAG were partially deacylated with ethylmagnesium bromide, and the resulting 1,2-, 2,3-diacylglycerols (DAG), and 2-monoacylglycerols (MAG) were purified by thin-layer chromatography. 1,2- and 2,3-DAG were further fractionated by chiral column high-performance liquid chromatography of the 3,5-dinitrophenylurethane derivatives. Alternately, TAG were subjected to porcine pancreatic lipase, and the resulting 2-MAG were purified for further analysis. Gas-liquid chromatography of fatty acid methyl esters prepared from the separated DAG and MAG, coupled with appropriate calculations, indicated that the Δ5-olefinic acids, irrespective of the species, chainlengths and number of ethylenic bonds, were considerably enriched in the sn-3 position of TAG where they accounted for ca. 35 to 74 mole% of fatty acids esterified to this position (depending on the initial level of total Δ5-olefinic acids in TAG), which corresponded to 79–94% of Δ5-olefinic acids esterified to the three positions. On the other hand, Δ5-olefinic acids were less than 10% in the sn-2 position and less than 6% in the sn-1 position of TAG. This specific enrichment of Δ5-olefinic acids in the sn-3 position thus appears to be a general characteristic of conifer seed TAG. These results were extended to TAG from the seeds of two pine species (Pinus koraiensis and P. pinaster) that are rich in Δ5-olefinic acids and available commercially on a ton-scale.  相似文献   

9.
Acylglycerols in castor oil less polar than triricinolein were identified by electrospray ionization–mass spectrometry using the lithium adducts of the acylglycerols in the HPLC fractions of castor oil. Thirty four new molecular species of acylglycerols containing hydroxy fatty acids in castor oil were identified by MS. The chain lengths of fatty acid substituents were C16, C18, C20, C22 and C23. The numbers of double bonds of the fatty acids were from zero to three. The numbers of hydroxyl groups on the fatty acid chains were from zero to three as previously reported. The structure of fatty acid, OH18:2, was proposed as 12-hydroxy-9,13-octadecadienoic acid. An unusual odd-numbered long-chain fatty acid, 23:0 (tricosanoic acid), was identified. Some new estolides and tetraacylglycerols, were identified as (12-ricinoleoylricinoleoyl)-ricinoleoyl-linoleoyl-glycerol (RRRL), (12-ricinoleoylricinoleoyl)-ricinoleoyl-oleoyl-glycerol (RRRO), (12-ricinoleoylricinoleoyl)-ricinoleoyl-palmitoyl-glycerol (RRRP), (12-ricinoleoylricinoleoyl)-ricinoleoyl-stearoyl-glycerol (RRRS) and (12-ricinoleoylricinoleoyl)-ricinoleoyl-linolenoyl-glycerol (RRRLn). The normal fatty acid (non-hydroxylated) of these tetraacylglycerols were directly attached to the glycerol backbone. The biosynthetic pathway of castor oil is proposed.  相似文献   

10.
Human milk traicylglycerols (TAG) were analyzed by ammonia negative ion chemical ionization tandem mass spectrometry. The deprotonated molecular ions of triacylglycerols were fractionated at the first mass spectrometry (MS) stage. Twenty-nine of the deprotonated TAG ions were further analyzed based on their collisionally activated (CA) spectra. The tandem MS analysis covered eleven major acyl carbon number fractions, two of which contained odd carbon number fatty acids. Fatty acids of 28 different molecular weights were recorded from the daughter spectra. Hexadecanoic acid was present in all CA spectra, octadecenoic acid in the CA spectra of all mono- and higher unsaturated TAG, and octadecadienoic acid in the CA spectra of all di- and higher unsaturated TAG. The major fatty acid combinations in triacylglycerols were: with 0 double bonds (DB), 12∶0/12∶0/16∶0; with 1 DB, 12∶0/16∶0/18∶1; with 2 DB, 16∶0/18∶1/18∶1; with 3 DB, 16∶0/18∶2/18∶1; with 4 DB, 18∶2/18∶1/18∶1; and with 5 DB, 18∶2/18∶2/18∶1; hexadecanoic acid typically occupied thesn-2 position. The most abundant TAG was shown to besn-18∶1–16∶0–18∶1, comprising about 10% of all triacylglycerols.  相似文献   

11.
The liver oils of six shallow-water shark species, silky (Carcharhinus falciformis), thresher (Alopias superciliosus), oceanic whitetip (Carcharhinus longimanus), blue (Prionace glauca), hammerhead (Sphyrna lewini) and salmon (Lamna ditropis) were analyzed with particular attention to the regioisomeric composition of triacylglycerols (TAG). The TAG compositions were analyzed by using an HPLC-evaporative light scattering detector and each molecular species identified by HPLC-atmospheric pressure chemical ionization/mass spectrometry. Major lipid components of all sharks’ oils were TAG (~80 %) made up of omega-3 polyunsaturated fatty acids at 26–40 % and 20–25 % docosahexaenoic acid (DHA). Forty different molecular species were detected in the TAG fractions. TAG consisting of one palmitic acid, one DHA and one oleic acid (12.5–19.9 %) and TAG consisting of two palmitic acids and one DHA (8.4–15.4 %) were the predominant form while 30–50 % TAG molecular species were bound to one or more DHA. Distribution of fatty acids in the primary (sn-1 and sn-3) and secondary (sn-2) position of the glycerol backbones was examined by regiospecific analysis by using pancreatic lipase and it was found that DHA was preferentially positioned at sn-2. These findings greatly extend the utilization of shark liver oils in food productions and may have a significant impact on the future development of the fish oil industry.  相似文献   

12.
Ando Y  Oomi Y 《Lipids》2001,36(7):733-740
This paper presents the positional distribution of fatty acids in triacyl-sn-glycerols (TAG) of Artemia nauplii used in aquaculture as a live food for marine fish larvae. The nauplii were enriched with docosahexaenoic acid (DHA) ethyl ester (EE) in the form of gelatin-acacia microcapsules for 4, 18, and 24 h. TAG of the initial, enriched, and unenriched Artemia nauplii were subjected to stereospecific analysis. A remarkable increase of DHA content in the enriched Artemia TAG confirmed the view that DHA-EE is effectively assimilated and incorporated into the TAG fraction of Artemia nauplii. TAG of the nauplii enriched with 25 mg/L of DHA-EE contained DHA at concentrations of 5.9–6.8, 4.3–6.0, and 14.3–22.3 mol% in the sn-1, sn-2, and sn-3 positions, respectively. When the nauplii were enriched with 100 mg/L of DHA-EE, proportions of DHA in the sn-1, sn-2, and sn-3 positions were 5.2–8.6, 3.9–6.0, and 12.2–25.4 mol%, respectively. In all of the enriched Artemia, DHA was preferentially located in the sn-3 position followed in sequence by the sn-1 and sn-2 positions. The lower content of DHA in the sn-1 and sn-2 positions was consistent with low content of this acid in 1,2-diacyl-sn-glycerophospholipids. When fish larvae are reared on Artemia nauplii enriched with LL-type DHA oil, the larvae feed on DHA esterified in TAG with a positional distribution pattern similar to that of marine mammals (sn-3≫sn-1>sn-2) rather than that of fish or marine invertebrates (sn-2≫sn-3>sn-1).  相似文献   

13.
Human milk triacylgycerols (TAG) were analyzed by tandem mass spectrometry. The SIMPLEX method and a simple linear model were used to interpret the distribution of fatty acids between thesn-2 andsn-1,3 positions in 24 major molecular weight groups of TAG. The number of regio-isomeric pairs of TAG varied between 3 and 18 in each of these groups. Hexadecanoic (16∶0), tetradecanoic (14∶0) and dodecanoic acids (12∶0) typically occupied thesn-2 position in TAG containing less than 54 acyl carbons, whereas long-chain C18 and C20 acids were predominantly located at the primary positions. The positions of the three fatty acids within a TAG molecule were shown to depend on the fatty acid combination. The maximum of 12∶0 in thesn-2 position appeared at acyl carbon number (ACN) 48, the maxima of 14∶0 were at ACN 44 and ACN 50, and for 16∶0 at ACN 46 and 52.  相似文献   

14.
Diacylglycerols (DAG) of conjugated linoleic acid (CLA) were prepared by esterification of glycerol with fatty acids enriched with CLA (FFA–CLA, >95%) in the presence of a novel lipase from Malassezia globosa (SMG1). Lipase SMG1 is strictly specific to mono- and diacylglycerols but not triacylglycerols, which is similar to the properties of lipase from Penicillium camembertii (lipase G 50), but lipase SMG1 showed preference on the production of DAG with the reaction proceeding. Low temperature was beneficial for the conversion of FFA–CLA into acylglycerols, the degree of esterification reached 93.0% when the temperature was 5 °C. The maximum DAG content (53.4%) was achieved at 25 °C. The rate of DAG synthesis increased as the enzyme loading increased. However, at lipase amounts above 240 U/g mixtures, no significant increases in DAG concentration were observed. The molar ratio of FFA–CLA to glycerol and initial water content were optimized to be 1:3 (mol/mol) and 3%. Lipase SMG1 showed no regioselectivity because the contents of 1,3-DAG and 1,2-DAG were 43.1% and 21.2% based on total content of acylglycerols. By calculating the ratio of 9c, 11t-CLA to 10t, 12c-CLA, it was indicated that lipase SMG1 showed a little preference to 10t, 12c-CLA at the sn-1(3) position of monoacylglycerols (MAG), while no selectivity for 9c, 11t-CLA at the sn-2 position of DAG was obviously found.  相似文献   

15.
In this work the molecular fatty components of Pecorino Sardo Protected Designation of Origin (PS PDO) cheese were characterized through an exhaustive investigation of the 1H- and 13C-NMR spectra of the extracted lipids. Several fatty acids (FA), such as long chain saturated, oleic, linoleic, linolenic, butyric, capric, caprylic, caproic, trans vaccenic, conjugated linoleic acid (cis9, trans11–18:2), and caproleic (9–10:1) were unambiguously detected. The positional isomery of some acyl groups in the glycerol backbone of triacylglycerols (TAG) was assessed. Furthermore, the NMR signals belonging to sn-1,2/2,3, sn-1,3 diacylglycerols (DAG), and free fatty acids (FFA) were analysed as a measure of lipolytic processes on cheese. Lastly, 1H-NMR resonances of saturated aldehydes and hydroperoxides were detected, their very low intensity indicating that the lipid oxidation process can be considered to be of minor relevance in Pecorino Sardo cheese.  相似文献   

16.
Seeds from different collections of cultivatedSesamum indicum Linn. and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum and Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil content and fatty acid composition of the total lipids. The wild seeds contained less oil (ca. 30%) than the cultivated seeds (ca. 50%). Lipids from all four species were comparable in their total fatty acid composition, with palmitic (8.2–12.7%), stearic (5.6–9.1%), oleic (33.4–46.9%) and linoleic acid (33.2–48.4%) as the major acids. The total lipids from selected samples were fractionated by thin-layer chromatography into five fractions: triacylglycerols (TAG; 80.3–88.9%), diacylglycerols (DAG; 6.5–10.4%), free fatty acids (FFA; 1.2–5.1%), polar lipids (PL; 2.3–3.5%) and steryl esters (SE; 0.3–0.6%). Compared to the TAG, the four other fractions (viz, DAG, FFA, PL and SE) were generally characterized by higher percentages of saturated acids, notably palmitic and stearic acids, and lower percentages of linoleic and oleic acids in all species. Slightly higher percentages of long-chain fatty acids (20∶0, 20∶1, 22∶0 and 24∶0) were observed for lipid classes other than TAG in all four species. Based on the fatty acid composition of the total lipids and of the different acyl lipid classes, it seems thatS. radiatum andS. angustifolium are more related to each other than they are to the other two species.  相似文献   

17.
Ten diacylglycerols (DAG) and 74 triacylglycerols (TAG) in the seed oil of Physaria fendleri were recently identified by high‐performance liquid chromatography (HPLC) and mass spectrometry (MS). These acylglycerols (AG) were quantified by HPLC with evaporative light scattering detector and electrospray ionization mass spectrometry of the lithium adducts of the AG in the HPLC fractions of lesquerella oil. The MS1 ion signal intensities of molecular ions [M + Li]+ in HPLC fractions of an HPLC peak were used to estimate the ratios of AG in the HPLC peak. The ratios of TAG with the same mass in HPLC fractions were estimated by the ratios of the sums of MS2 ion signal intensities from the neutral loss of the three fatty acids [M + Li ? FA]+. The ratio of DAG with the same mass were estimated by the ratio of the sums of two MS2 ion signal intensities [M + Li ? FA]+ and [FA + Li]+ from the two different FA of a DAG. We have estimated the contents of ten molecular species of DAG and 74 molecular species of TAG in P. fendleri oil using this new method. The content of ten DAG combined was about 1 % and 74 TAG was about 98 %. The contents of DAG in decreasing order were: LsLs (0.25 %), LsLn (0.25 %), LsO (0.24 %), and LsL (0.11 %); and the contents of TAG in decreasing order were: LsLsO (31.3 %), LsLsLn (24.9 %), LsLsL (15.8 %), LsL‐OH20:2 (4.3 %), LsO‐OH20:2 (2.8 %), and LsLn‐OH20:2 (2.5 %).  相似文献   

18.
Determination of lipase specificity   总被引:1,自引:0,他引:1  
Specificity of lipases is controlled by the molecular properties of the enzyme, structure of the substrate and factors affecting binding of the enzyme to the substrate. Types of specificity are as follows. I. Substrate: (a) different rates of lipolysis of TG, DG, and MG by the same enzyme; (b) separate enzymes from the same source for TG, DG and MG. II. Positional: (a) primary esters; (b) secondary esters; and (c) all three esters or nonspecific hydrolysis. III. Fatty acid, preference for similar fatty acids. IV. Stereospecificity: faster hydrolysis of one primarysn ester as compared to the other. V. Combinations of I–IV. Lipases with these specificities are: Ia, pancreatic; Ib, postheparin plasma. IIa, pancreatic; IIb,Geotrichum candidum, for fatty acids withcis-9-unsaturation, and IIc,Candida cylindracea. III,G. candidum for unsaturates. IV.sn-1, postheparin plasma andsn-3 human and rat lingual lipases. V. Rat lingual lipase. Methods for determination involve digestion of natural fats of known structure and synthetic acylglycerols followed by analysis of the lipolysis products. All of the types of specificity have been detected with use of synthetic acylglycerols. Detection of stereospecificity requires enantiomeric acylglycerols which are difficult to synthesize, so other methods have been developed. These involve the generation of 1,2-(2,3) DG and resolution of the enantiomers. Trioleoylglycerol or racemic TG can be used as substrates. If the lipase is stereospecific, then either thesn-1,2- or 2,3-enantiomer will predominate. The relative amounts of the enantiomers can be determined by measurement of specific rotation, and nuclear magnetic resonance spectra. The DG can also be separated by conversion to phospholipids and hydrolysis with phospholipases A-2 or C. Applications of these procedures are discussed and data on the specificity of various lipases presented. Scientific Contribution No. 988, Storrs Agricultural Experiment Station, University of Connecticut, Storrs, CT 06268. Trioleoylglycerol is 18∶1−18∶1−18∶1, etc. 1,2-dioleoyl-3-palmitoyl-sn-glycerol issn-18∶1−18∶1−16∶0, with thesn-1 ester to the left. If the TG is racemic,rac is omitted.  相似文献   

19.
We examined the effect of diet on gallstone incidence and the composition of biliary phosphatidylcholines in methyltestosterone-treated female hamsters. These hamsters were fed a nutritionally adequate purified lithogenic diet containing 2% corn oil, 4% butterfat, 0.3% cholesterol, and 0.05% methyltestosterone, resulting in a cholesterol gallstone incidence of 86%. This incidence was lowered when mono-and polyunsaturated fats or fatty acids were added to the diet: 2.5% oleic acid resulted in total prevention of cholesterol cholelithiasis, 2.5% linoleic acid, and 4% safflower oil (78% linoleic acid content) reduced gallstone incidence to 26 and 8%, respectively. An additional 4% butterfat (29% oleic acid content) produced gallstones in 50% of the animals. At the end of the 6-wk feeding period, the bile of all hamsters was supersaturated with cholesterol. The major biliary phosphatidylcholine species in all groups were (sn-1-sn-2): 16:0–18:2, 16:0–18:1, 18:0–18:2, 16:0–20:4, and 18:2–18:2. The safflower oil-and linoleic acidfed hamsters exhibited an enrichment of 16:0–18:2 (16–18%); added butterfat or oleic acid increased the proportion of 16:0–18:1 (9 and 25%, respectively). We conclude that the phosphatidylcholine molecular species in female hamster bile can be altered by dietary fats/fatty acids and that mono-and polyunsaturated fatty acids play a role in suppressing the induced cholelithiasis.  相似文献   

20.
The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species contained caprylic, capric, and lauric acids in the sn-2 position. The appearance of new TAG in the transgenic oil illustrates the extensive effect of genetic modification on fat metabolism by transformed plants and offers interesting possibilities for improved enteral applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号