首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of a constitutive model for predicting the thermal-mechanical fatigue (TMF) of 95.5Sn-3.9Ag-0.6Cu (wt.%) Pb-free solder interconnects requires the measurement of time-independent mechanical and physical properties. Yield stress was measured over the temperature range of −25–160°C using strain rates of 4.2 × 10−5 s−1 and 8.3 × 10−4 s−1. The yield-stress values ranged from approximately 40 MPa at −25°C to 10 MPa at 160°C for tests performed at 4.2 × 10−5 s−1. The faster strain rate and specimen aging had a limited impact on the yield stress. The true stress/true strain curves indicated that dynamic-recovery and dynamic-recrystallization processes took place in as-cast samples exposed to temperatures of 125°C and 160°C, respectively, while tested at a strain rate of 4.2 × 10−5 s−1. Aging the sample prior to testing, as well as a faster strain rate, mitigated both phenomena. Dynamic Young’s modulus values ranged from 55 GPa at −50°C to 35 GPa at 200°C, while the coefficient of thermal expansion (CTE) increased from approximately 12 × 10−6°C−1 to 24 × 10−6°C−1 for the same temperature range. The aging treatment had little effect on either Young’s modulus or the CTE.  相似文献   

2.
The metallurgical and mechanical properties of Sn–3.5 wt%Ag–0.5 wt%Bi–xwt%In (x = 0–16) alloys and of their joints during 85 °C/85% relative humidity (RH) exposure and heat cycle test (−40–125 °C) were evaluated by microstructure observation, high temperature X-ray diffraction analysis, shear and peeling tests. The exposure of Sn–Ag–Bi–In joints to 85 °C/85%RH for up to 1000 h promotes In–O formation along the free surfaces of the solder fillets. The 85°C/85%RH exposure, however, does not influence the joint strength for 1000 h. Comparing with Sn–Zn–Bi solders, Sn–Ag–Bi–In solders are much stable against moisture, i.e. even at 85 °C/85%RH. Sn–Ag–Bi–In alloys with middle In content show severe deformation under a heat cycles between −40 °C and 125 °C after 2500 cycles, due to the phase transformation from β-Sn to β-Sn + γ-InSn4 or γ-InSn4 at 125 °C. Even though such deformation, high joint strength can be maintained for 1000 heat cycles.  相似文献   

3.
In this paper, a new method is proposed for evaluating the high-cycle fatigue strength of BGA (Ball Grid Array) packages with Pb-free solder and Pb–Sn solder due to vibration. An attached weight induced mixed mode stress in the solder ball of a package was used. To consider the effect of the mixed mode stress that occurred in a solder ball and the frequency to fatigue strength of the solder ball, a test was carried out with the three kinds of weights (σn/τn = 4, 5, and 6) at various frequencies (10–27 Hz). To clarify the effect of frequency, a nonlinear analysis with a viscoplastic model was carried out within the range of 0.001–3450 Hz. From the continuous observation of the cross-section of the package and finite element method (FEM) analysis results, it was revealed that the maximum principal stress is the driving force to package failure. Although an intermetallic compound in both packages and a Pb-rich region in a Pb–Sn solder based package were confirmed by EDX microprobe analysis, they do not contribute to the initiation of a crack in a solder ball. The fatigue strength of the Pb-free solder and Pb solder was evaluated on the basis of the maximum principal stress calculated by FEM and the experimental results.  相似文献   

4.
The microstructures of solders in microelectronic components, lead containing as well as lead free, change over time. This is first of all due to comparatively high homologous temperatures which occur during reflow as well as during operation of the component. Moreover, because of the intrinsic thermal mismatch between the various materials that constitute the package substantial mechanical stresses and strains will arise and assist the process of microstructural change. In this paper we will, first, briefly provide experimental evidence for such microstructural change and how it relates to the solder bulk as well as to the various interfaces and passivation materials that are used when a solder joint is formed. Second, we will review state-of-the-art modeling techniques that allow to simulate such changes of microstructure provided certain material parameters are known. For this purpose we will set up all equations and then provide information on all the material parameters required for a numerical solution. We will present computer simulations based on this theoretical framework and study the influence of the material parameters on coarsening and aging and, in particular, examine the impact of mechanical stresses and strains. Finally we will address difficulties and challenges involved, experimental as well as modeling ones.  相似文献   

5.
The shear strength of the under bump metallurgy (UBM) structure in both the high-melting solder bump and low-melting solder bump after aging were evaluated. Scanning electron microscopy and transmission electron microscopy were examined in the intermetallic compounds (IMCs) and bump joint profiles at the interface between solder and UBM. In 900 h aging experiments, the maximum shear strength of Sn–97wt.%Pb and Sn–37wt.%Pb decreased by 25% and 20%, respectively. The growth of Cu6Sn5 and Cu3Sn was ascertained by the aging treatment. The crack path changes from the interior of a solder to the IMC interface. Compare with the Cu–Sn IMC, the amount of Ni–Sn IMC was small. The Ni layer is considered as the diffusion barrier.  相似文献   

6.
Copper (Cu) has been widely used in the under bump metallurgy of chip and substrate metallization for chip packaging. However, due to the rapid formation of Cu–Sn intermetallic compound (IMC) at the tin-based solder/Cu interface during solder reaction, the reliability of this type of solder joint is a serious concern. In this work, electroless nickel–phosphorous (Ni–P) layer was deposited on the Cu pad of the flexible substrate as a diffusion barrier between Cu and the solder materials. The deposition was carried out in a commercial acidic sodium hypophosphite bath at 85 °C for different pH values. It was found that for the same deposition time period, higher pH bath composition (mild acidic) yields thicker Ni–P layer with lower phosphorous content. Solder balls having composition 62%Sn–36%Pb–2%Ag were reflowed at 240 °C for 1 to 180 min on three types of electroless Ni–P layers deposited at the pH value of 4, 4.8 and 6, respectively. Thermal stability of the electroless Ni–P barrier layer against the Sn–36%Pb–2%Ag solder reflowed for different time periods was examined by scanning electron microscopy equipped with energy dispersed X-ray. Solder ball shear test was performed in order to find out the relationship between the mechanical strength of solder joints and the characteristics of the electroless Ni–P layer deposited.The layer deposited in the pH 4 acidic bath showed the weak barrier against reflow soldering whereas layer deposited in pH 6 acidic bath showed better barrier against reflow soldering. Mechanical strength of the joints were deteriorated quickly in the layer deposited at pH 4 acidic bath, which was found to be thin and has a high phosphorous content. From the cross-sectional studies and fracture surface analyses, it was found that the appearance of the dark crystalline phosphorous-rich Ni layer weakened the interface and hence lower solder ball shear strength. Ni–Sn IMC formed at the interfaces was found to be more stable at the low phosphorous content (14 at.%) layer. Electroless Ni–P deposited at mild acidic bath resulting phosphorous content of around 14 at.% is suggested as the best barrier layer for Sn–36%Pb–2%Ag solder.  相似文献   

7.
The microstructures and shear strength of the interface between Sn–Zn lead-free solders and Au/Ni/Cu interface under thermal aging conditions was investigated. The intermetallic compounds (IMCs) at the interface between Sn–Zn solders and Au/Ni/Cu interface were analyzed by field emission scanning electron microscopy and transmission electron microscopy. The results showed the decrease in the shear strength of the interface with aging time and temperature. The solder ball with highly activated flux had about 8.2% increased shear strength than that with BGA/CSP flux. Imperfect wetting and many voids were observed in the fracture surface of the latter flux. The decreased shear strength was influenced by IMC growth and Zn grain coarsening. In the solder layer, Zn reacted with Au and then was transformed to the β-AuZn compound. Although AuZn grew first, three diffusion layers of γ-Ni5Zn21 compounds were formed after aging for 600 h at 150 °C. The layers divided by Ni5Zn21 (1), (2), and (3) were formed with the thickness of 0.7 μm, 4 μm, and 2 μm, respectively.  相似文献   

8.
This paper aims to understand the solder bump electromigration phenomenon in the Cu/Sn–3Ag–0.5Cu/Cu system. A temperature of 453 K with a current density of 10 kA/cm2 was applied. A void nucleated at the highest current density point at the cathode. As the void grew along the cathode side, a solder depletion occurred on the opposite side of the electron entry point, resulting in an open failure. A unique purposely-designed 3D model simulation methodology provides a good understanding of the void nucleation and growth behavior. The temperature of the solder joint during the electromigration test was measured successfully by the resistance change in the junction line between the two joints.  相似文献   

9.
New silylated precursors with hole transporting units are prepared by modification of different active molecules (carbazole, oxadiazole and tetraphenylphenylenediamine derivatives) using sol‐gel precursors. Absorption and photoluminescence spectra show that the electronic structures are not significantly modified by the functionalization. Field dependence of the hole mobility of the different sol‐gel layers is measured using the time‐of‐flight technique. The highest hole mobility is observed for the layer having tetraphenylphenylenediamine units: 5.7 × 10—5 cm2.V—1.s—1 at a field strength of E = 5 × 105 V.cm—1. For the best carbazole compound, the mobility is found to be about twentyfold lower at the same field. Further experiments are required to test these new materials as hole transporting layers in photorefractive and electroluminescent devices. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
In recent years, no-flow underfill technology has drawn more attention due to its potential cost-savings advantages over conventional underfill technology, and as a result several no-flow underfill materials have been developed and reported. However, most of these materials are not suitable for lead-free solder, such as Sn/Ag (m.p. 225/spl deg/C), Sn/Ag/Cu (m.p. 217/spl deg/C), applications that usually have higher melting temperatures than the eutectic Sn-Pb solder (m.p. 183/spl deg/C). Due to the increasing environmental concern, the demand for friendly lead-free solders has become an apparent trend. This paper demonstrates a study on two new formulas of no-flow underfill developed for lead-free solders with a melting point around 220/spl deg/C. As compared to the G25, a no-flow underfill material developed in our research group, which uses a solid metal chelate curing catalyst to match the reflow profile of eutectic Sn-Pb solder, these novel formulas employ a liquid curing catalyst thus provides ease in preparation of the no-flow underfill materials. In this study, curing kinetics, glass transition temperature (Tg), thermal expansion coefficient (TCE), storage modulus (E') and loss modulus (E') of these materials were studied with a differential scanning calorimetry (DSC), a thermo-mechanical analysis (TMA), and a dynamic-mechanical analysis (DMA), respectively. The pot-life in terms of viscosity of these materials was characterized with a stress rheometer. The adhesive strength of the materials on the surface of silicon chips were studied with a die-shear instrument. The influences of fluxing agents on the materials curing kinetics were studied with a DSC. The materials compatibility to the solder penetration and wetting on copper clad during solder reflow was investigated with both eutectic Sn-Pb and 95.9Sn/3.4Ag/0.7Cu solders on copper laminated FR-4 organic boards.  相似文献   

11.
We examine electromigration fatigue reliability and morphological patterns of Sn–37Pb and Sn–3Ag–1.5Cu/Sn–3Ag–0.5Cu composite solder bumps in a flip–chip package assembly with Ti/Ni(V)/Cu UBM. The flip–chip test vehicle was subjected to test conditions of five combinations of applied electric currents and ambient temperatures, namely, 0.4 A/150 °C, 0.5 A/150 °C, 0.6 A/125 °C, 0.6 A/135 °C, and 0.6 A/150 °C. The electrothermal coupling analysis was employed to investigate the current crowding effect and maximum temperature in the solder bump in order to correlate with the experimental electromigration reliability using the Black’s equation as a reliability model. From available electromigration reliability models, we also present a comparison between fatigue lives of Sn–37Pb solder bumps with Ti/Ni(V)/Cu and those with Al/Ni(V)/Cu UBM under different current stressing conditions.  相似文献   

12.
The effect of plasma treatment on the adhesion strength of a moulding compound to a leadframe is evaluated on the basis of leadframe pull-out tests. The contact angle measurement method and atomic force microscopy are employed to quantitatively characterise the modified surface so as to correlate with the bond strength measurements. Process parameters including the type of gases used and the duration exposed in air before moulding are specifically studied. The results indicate that plasma treatments of leadframe have three major ameliorating effects, namely, clean surface due to the removal of organic contaminants, enhanced chemical compatibility with moulding compound and rough surface with associated larger surface contact area for better mechanical interlocking. Exposure of plasma treated leadframes in air before moulding is found detrimental to interface bond quality, recommending moulding operations immediately after treatment. It is also shown that roughness on the nanoscale is an important surface characteristic that has a strong correlation with the interface bond strength.  相似文献   

13.
An experimental investigation was combined with a non-linear finite element analysis using an elastic–viscoplastic constitutive model to study the effect of ball shear speed on the shear forces of flip chip solder bumps. A solder composition used in this study was Sn–3mass%Ag–0.5mass%Cu. A low cost bumping process has been employed using electroless Ni and immersion Au followed by solder paste stencil printing. A thin layer of intermetallic compound, (Ni1−xCux)3Sn4, was formed by the reaction between the solder and electroless Ni with a thickness of about 1.4 μm, while some discontinuous (Cu1−yNiy)6Sn5 particles were also formed at the interface. The compositions of the resulting compounds were identified using energy dispersive spectrometer (EDS) and electron microprobe analysis (EPMA). Shear tests were carried out over a shear speed range from 20 to 400 μm/s at a shear ram height of 20 μm. The shear force was observed to linearly increase with shear speed and reach the maximum value at the fastest shear speed in both experimental and computational results. The optimum shear speeds for the shear test of solder bumped flip chip were recommended to be not exceeding 200 μm/s. The failure mechanisms were discussed in terms of von Mises stresses and plastic strain energy density distributions.  相似文献   

14.
15.
《Microelectronics Reliability》2014,54(6-7):1206-1211
With the aim to miniaturize and to reduce the cost, the increasing demand, regarding to advanced 3D-packages as well as high performance applications, accelerates the development of 3D-silicon integrated circuits. The trend to smaller and lighter electronics has highlighted many efforts towards size reduction and increased performance in electronic products. The radio frequency (RF) performances are limited by parasitic effects due to the resistor–inductor–capacitor (RLC) network, between the wire bond connections from the dies to the lead frame. The use of flip-chip bonding technology for very fine pitch packaging allows high integration and limits parasitic inductances. Electromigration (EM) and thermomigration (TM) may have serious reliability issues for fine-pitch Pb-free solder bumps in the flip-chip technology used in consumer electronic products. A possibility to extend the reliability is the use of plastic ball in the solder bumps. Bumps containing a plastic solder balls have an excellent reliability. Using a plastic ball with a low Young modulus, the solder hardness is moderated and the stress on a ball is relaxed. Due to this, the stress does not concentrate on the solder joint which prolongs the lifetime. In this investigation, the thermal–electrical–mechanical coupling of electromigration on bumps containing a plastic solder is studied.  相似文献   

16.
Sn-Ag-Cu composite solders reinforced with nano-sized, nonreacting, noncoarsening 1 wt% TiO2 particles were prepared by mechanically dispersing TiO2 nano-particles into Sn-Ag-Cu solder powder and the interfacial morphology of the solder and flexible BGA substrates were characterized metallographically. At their interfaces, different types of scallop-shaped intermetallic compound layers such as Cu6Sn5 for a Ag metallized Cu pad and Sn-Cu-Ni for a Au/Ni and Ni metallized Cu pad, were found in plain Sn-Ag-Cu solder joints and solder joints containing 1 wt% TiO2 nano-particles. In addition, the intermetallic compound layer thicknesses increased substantially with the number of reflow cycles. In the solder ball region, Ag3Sn, Cu6Sn5 and AuSn4 IMC particles were found to be uniformly distributed in the β-Sn matrix. However, after the addition of TiO2 nano-particles, Ag3Sn, AuSn4 and Cu6Sn5 IMC particles appeared with a fine microstructure and retarded the growth rate of IMC layers at their interfaces. The Sn-Ag-Cu solder joints containing 1 wt% TiO2 nano-particles consistently displayed a higher hardness than that of the plain Sn-Ag-Cu solder joints as a function of the number of reflow cycles due to the well-controlled fine microstructure and homogeneous distribution of TiO2 nano-particles which gave a second phase dispersion strengthening mechanism.  相似文献   

17.
High aspect ratio (large diameter/thickness) solder joints which are plastically constrained develop large hydrostatic stresses (Friction Hill) greatly in excess of their yield strength. Because the local high triaxial stresses arising from the Friction Hill prevent homogeneous yielding and, in a strain controlled system, will localize plastic deformation within the regions near free surfaces, abrupt brittle fracture through an intermetallic or along an interface can occur. In such situations, the service life of the joint during fatigue situations such as thermal cycling will be greatly reduced. The prevention of triaxial stress build up within such a strain controlled environment which can occur in, for example, leadless chip carrier solder joints requires a distribution of internal free surfaces within the joint. The solder system developed in this study is a thin porous metal film with a regular distribution of pores. The solder material is formed from the usual components, tin and lead. Small lead or tin particles are coated with a thin film of the other component, mixed with flux paste, and the temperature is raised to just above the eutectic temperature. Solid state diffusion occurs across the lead-tin interface until its composition reaches the melting point. The particles then are interconnected by a thin near eutectic liquid film. Additional metal from the solid particle dissolves into the liquid increasing its position and, thus its melting point. Diffusion into the liquid continues until it solidifies isothermally. This forms an interconnecting network of solder “mini-elements” with a dense pore structure.  相似文献   

18.
The interfacial reactions and ball shear properties of ball grid array (BGA) solder joints aged at 170 °C for up to 21 days were investigated with different displacement rates. Two different kinds of solders, Sn–37Pb and Sn–3.5Ag (all wt.%), and an electroplated Ni/Au BGA substrate were employed in this work. A continuous Ni3Sn4 intermetallic compound (IMC) layer was formed at the interfaces between both the Sn–37Pb and Sn–3.5Ag solders and the substrate during reflow. After aging, two different reaction layers, consisting of (AuxNi1−x)Sn4 IMC and Pb-rich phase, were additionally observed between the Sn–37Pb solder and the Ni3Sn4 IMC layer. The thicknesses of these interfacial reaction layers increased with increasing aging time. After reflow, all the fractures occurred inside the bulk solder. The fracture location of the Sn–37Pb solder joints was shifted toward the solder/Ni interface with increasing aging time and displacement rate, whereas the fracture of the Sn–3.5Ag solder joints mainly occurred inside the bulk solder, irrespective of the aging time and displacement rate. Consequently, the shear properties of the Sn–37Pb solder joints significantly decreased with increasing aging time, whereas those of the Sn–3.5Ag solder joints slightly decreased. The tendency toward brittle fracture of the Sn–37Pb solder joints was intensified with increasing displacement rate. The shear properties of the ductile solder joints increased with increasing displacement rate, while the displacement until fracture, deformation energy and displacement rate sensitivity of the brittle solder joints significantly decreased with increasing displacement rate.  相似文献   

19.
Expressions arising from the Bruggeman approach for the homogenization of dielectric–magnetic composite materials, without ignoring the sizes of the spherical particles, are presented. These expressions exhibit the proper limit behavior. The incorporation of size dependence is directly responsible for the emergence of dielectric–magnetic coupling in the estimated relative permittivity and permeability of the homogenized composite material.  相似文献   

20.
The formation of intermetallic compounds in the solder joint of a flip chip or chip scale package depends on the under bump metallurgy (UBM), the substrate top surface metallisation, the solder alloy and the application conditions. To evaluate the influence of intermetallic compounds on the solder joint reliability, a detailed study on the influence of the UBM, the gold finish thickness of the substrate top surface metallisation, the solder alloy and the aging conditions has been conducted. Flip chips bumped with different solder alloys were reflow-mounted on low temperature co-fired ceramic substrates. The flip chip package was then aged at high temperature and a bump shear test followed to examine the shear strength of the solder joint at certain aging intervals. It was found that the type of UBM has a great impact on the solder joint reliability. With Ni(P)/Au as the UBM, well-documented gold embrittlement was observed when the gold concentration in the eutectic SnPb solder was about 3 wt%. When Al/Ni(V)/Cu was used as the UBM, the solder joint reliability was substantially improved. Copper dissolution from the UBM into the solder gives different intermetallic formations compared to Ni(P)/Au as UBM. The addition of a small amount of copper in the solder alloy changed the mechanical property of the intermetallic compound, which is attributed to the formation of Sn–Cu–Ni(Au) intermetallic compounds. This could be used in solving the problem of the AuSn4 embrittlement. The formation and the influence of this Sn–Cu–Ni(Au) intermetallic phase are discussed. The gold concentration in the solder joint plays a role in the formation of intermetallic compounds and consequently the solder joint reliability, especially for the Sn–Ag–Cu soldered flip chip package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号