首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wind characteristics of 11 sites in the windy regions in Morocco have been analysed. The annual average wind speed for the considered sites ranged from 5 m/s to 10 m/s and the average power density from 100 W/m2 to 1000 W/m2, which might be suitable for electrical power production by installing wind farms. On an annual scale the observations of the distribution of hourly wind speed are better fitted by the Weibull hybrid distribution in contrast to the Weibull distribution.The wind power is estimated to be 1817 MW, that is to say, the exploitable wind energy is 15198 GWh, which represents theoretically 11% of the total consumed energy in Morocco in 1994.  相似文献   

2.
In this study, wind characteristics were analyzed using the wind speed data collected of the six meteorological stations in Turkey during the period 2000–2006. The annual mean wind speed of the six stations (Erzurum, Elaz??, Bingöl, Kars, Manisa and Ni?de) is obtained as 8.7, 8.5, 5.9, 6.9, 7.4 and 8.0 m/s at 10 m height, respectively. The mean annual value of Weibull shape parameter k is between 1.71 and 1.96 while the annual value of scale parameter c is between 6.81 and 9.71 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of (600 kW, 1000 kW, 1500 kW and 2000 kW). The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

3.
Turkey is one of the developing countries. The production of electricity in Turkey is basically focused on hydro-power and thermal-power. On the other hand, measurements show that Turkey has a reasonable wind potential but this potential was not being used for many years due to government policies which supported the use of petroleum, coal, and hydro power as energy sources. In recent years there is an increasing interest in using wind energy as one of the energy sources. This paper briefly introduces a study of the determination of wind power potential of Nurda ı/Gaziantep district where is on the south of Turkey for future wind power generation projects. Evaluation of wind data; taken by Turkish Electrical Power Resources Development Administration at the foot of the mountain, Nurda ı, shows that the district has a mean wind speed of 7.3 m/s at 10 m height and observed highest value wind speed is 23.3 m/s. Mean power density of the site is found as 222 W/m2 and the results suggest that the site encourages investors especially since the terrain is a grassy plain on the side of the mountain and the measurements are taken at 10 m height.  相似文献   

4.
In this study, the potential of wind energy and assessment of wind energy systems in Turkey were studied. The main purpose of this study is to investigate the wind energy potential and future wind conversion systems project in Turkey. The wind energy potential of various regions was investigated; and the exploitation of the wind energy in Turkey was discussed. Various regions were analyzed taking into account the wind data measured as hourly time series in the windy locations. The wind data used in this study were taken from Electrical Power Resources Survey and Development Administration (EIEI) for the year 2010. This paper reviews the assessment of wind energy in Turkey as of the end of May 2010 including wind energy applications. Turkey's total theoretically available potential for wind power is around 131,756.40 MW and sea wind power 17,393.20 MW annually, according to TUREB (TWEA). When Turkey has 1.5 MW nominal installed wind energy capacity in 1998, then this capacity has increased to 1522.20 MW in 2010. Wind power plant with a total capacity of 1522.20 MW will be commissioned 2166.65 MW in December 2011.  相似文献   

5.
Turkey has remarkable wind energy potential, but its utilisation rate is very low. However, in 2007, energy investors applied to the Energy Market Regulatory Authority (EMRA) with 751 wind projects to obtain a 78180.2 MW wind power plant license. This paper first presents an overview of wind energy development in the world and then reviews related situations in Turkey. Second, to motivate the interest in wind energy investment, new wind power plant license applications in Turkey are analysed. Finally, wind electricity generation cost analyses were performed at 14 locations in Turkey. Capacity factors of investigated locations were calculated between 19.7% and 56.8%, and the production cost of electrical energy was between 1.73 and 4.99 $cent/kW h for two different wind shear coefficients.  相似文献   

6.
Conventional energy usage has various environmental effects that cause global warming. Renewable energy sources are thus more favorable because they have nearly zero emission. Wind energy, among the various renewable sources, finds increasing usage, concurrent with developing technology. In addition, wind is an infinite energy source. In this study, the electricity-generation ability of Kutahya has been investigated. With this aim, wind data, from the measurement station located on Bunelek Hill, Kutahya, have been collected for a period of 36 months (July 2001–June 2004). From the collected data, the electricity generated has been calculated for different types of wind turbines. The calculations have been based on the electricity requirement of the main campus of the Dumlupinar University. Finally, the economic evaluation has been analyzed using life-cycle cost analysis. For the analysis of the economical aspects, the social and CO2 costs have also been taken into account.  相似文献   

7.
The rapid increase in world energy demand, the depletion of conventional energy sources and the pollution caused by conventional fuels have increased the importance of developing new and renewable energy sources. Additionally, technological developments have resulted in increased energy demand for the entire world, including Turkey, especially for electrical energy. At present, wind energy is receiving considerable attention. This report focuses on the current status of wind energy in Turkey and in the world. An overview of wind energy in Turkey is presented, and its current status, application, support mechanisms and associated legislation in Turkey are described. Wind energy and its status in the world are also addressed. It can be concluded from this analysis that wind energy utilization in Turkey and throughout world has sharply increased. Turkey has an abundance of wind energy sources.  相似文献   

8.
Wind data for the years 2000 and 2001 were analyzed to evaluate the wind potential of the Mikra–Thessaloniki, region in northern Greece. The objective of the analysis was the establishment of the required criteria to answer the question: “are the renewable energy sources capable to maintain the operation of a desalination pilot unit?” The polar diagrams of the wind (wind speed, frequency, direction), the mean monthly and annual wind speed profile and the Weibull distributions for the years 2000 and 2001 are presented.  相似文献   

9.
Wind characteristics and wind turbine characteristics in Taiwan have been thoughtfully analyzed based on a long-term measured data source (1961–1999) of hourly mean wind speed at 25 meteorological stations across Taiwan. A two-stage procedure for estimating wind resource is proposed. The yearly wind speed distribution and wind power density for the entire Taiwan is firstly evaluated to provide annually spatial mean information of wind energy potential. A mathematical formulation using a two-parameter Weibull wind speed distribution is further established to estimate the wind energy generated by an ideal turbine and the monthly actual wind energy generated by a wind turbine operated at cubic relation of power between cut-in and rated wind speed and constant power between rated and cut-out wind speed. Three types of wind turbine characteristics (the availability factor, the capacity factor and the wind turbine efficiency) are emphasized. The monthly wind characteristics and monthly wind turbine characteristics for four meteorological stations with high winds are investigated and compared with each other as well. The results show the general availability of wind energy potential across Taiwan.  相似文献   

10.
The aim of this study is to establish the potential and the feasibility basis for the wind energy resources in some locations of East Mediterranean region of Turkey and provide suitable data for evaluating the potential wind power. For this purpose, hourly wind data, which were observed between the years 1997 and 2001 at the meteorological stations of Antakya and skenderun regions, were used. The dominant wind directions, the mean values, wind speeds, wind potential and the frequency distributions were determined. The results were classified according to the height above the ground level. Finally, the wind atlas of these regions in the form of contours of constant wind speed and wind potential was produced.  相似文献   

11.
Haydar Aras   《Renewable Energy》2003,28(14):2213
The increase in negative effects of fossil fuels on the environment has forced many countries, especially the developed ones, to use renewable energy sources. Currently the fastest developing energy source technology is wind energy. Because wind energy is renewable and environment friendly, systems that convert wind energy to electricity have developed rapidly. Wind energy is an alternative clear energy source compared to the fossil fuels that pollute the lower layer of atmosphere. Because wind energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of this study.  相似文献   

12.
The European Wind Atlas shows a very high wind energy capacity over the Aegean Sea and its coastal regions. Therefore, the western region of Turkey, which has a long coast along the Aegean Sea, appears to have high potential of wind energy. As a result of this fact, several studies have been performed to estimate the wind potential, especially, in western Turkey. However, due to the absence of a reliable and accurate Wind Atlas of Turkey, further studies on the assessment of wind energy in Turkey are necessary. In this study, the characteristics of wind on the campus of Izmir Institute of Technology, located in Cesme peninsula which has long coastline along the Aegean Sea, were studied over a period of one year. Measured data set and its evaluation showed that Izmir Institute of Technology campus area has a considerable wind energy potential. The study presented here is an attempt to promote wind energy in Turkey and to bridge the gap in order to create prospective Turkish Wind Atlas.  相似文献   

13.
Nevzat Onat  Sedat Ersoz 《Energy》2011,36(1):148-156
Investments in wind plants have increased rapidly as a result of changes to legal regulations in Turkey over the last five years. This has also led to an increase in the number of wind potential analyses in various regions of the country. This study analyzes the wind climate features of three regions in Turkey and their energy potential. In order to determine the features of wind in these regions, a five-layer Sugeno-type ANFIS model established under the MATLAB-Simulink software was used and the relationship between wind speed and other climate variables determined. In the second phase, WASP software was used to complete the wind energy potential analyses using wind speed data. The final phase includes calculations of the amount of electricity to be obtained technically and capacity usage rates of the installed turbines if wind farms are established in the selected areas. The comparative tables and graphics of the said areas were obtained. In conclusion, the selected areas are well located for the installation of parallel-connected wind plants to the national network in terms of the reliability of wind, the dispersion of wind potential and capacity usage rates.  相似文献   

14.
In this study, the measured wind speed data for year 2007 at 10 m, 30 m and 40 m heights for two provinces of Iran, North and South Khorasan, have been statistically analyzed to determine the potential of wind power generation. This paper presents the wind energy potential at four zones in these provinces, Bojnourd, Esfarayen of North Khorasan province and Nehbandan, and Fadashk of South Khorasan province. The objective is to evaluate the most important characteristic of wind energy in the studied sites. The statistical attitudes permit us to estimate the mean wind speed, the wind speed distribution function, the mean wind power density in the sites at the height of 10 m, 30 m and 40 m. Also, three new types of wind rose diagrams were shown.  相似文献   

15.
Conventional power generation mainly depends on natural gas and diesel oil in Brunei Darussalam. The power utility company is now thinking of power generation using natural wind. In this paper, wind energy, being one of the most readily available renewable energy sources, was studied. The wind characteristic, velocity and directions were studied using Weibull distribution based on the measurement of wind speed at two different locations in Brunei Darussalam. These wind speed distributions were modeled using the Wind Power program. The wind rose graph was obtained for the wind direction to analyze the wind power density onshore and offshore. Based on this analysis, it has been found that the wind speed of 3 to 5 m/s has a probability of occurrence of 40%. Besides, the annual energy production at a wind speed of 5 m/s has been found to be in the range between 1000 and 1500 kWh for both the locations in Brunei Darussalam.  相似文献   

16.
In this study, the two Weibull parameters of the wind speed distribution function, the shape parameter k (dimensionless) and the scale parameter c (ms?1), were computed from the wind speed data for ?zmir. Wind data, consisting of hourly wind speed records over a 5‐year period, 1995–1999, were measured in the Solar/Wind‐Meteorological Station of the Solar Energy Institute at Ege University. Based on the experimental data, it was found that the numerical values of both Weibull parameters (k and c) for ?zmir vary over a wide range. The yearly values of k range from 1.378 to 1.634 with a mean value of 1.552, while those of c are in the range of 2.956–3.444 with a mean value of 3.222. The average seasonal Weibull distributions for ?zmir are also given. The wind speed distributions are represented by Weibull distribution and also by Rayleigh distribution, with a special case of the Weibull distribution for k=2. As a result, the Weibull distribution is found to be suitable to represent the actual probability of wind speed data for ?zmir (at annual average wind speeds up to 3 ms?1). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The article, which is a segment of a complex wind energy examination, uses statistical methods to analyze the time series of monthly average wind speed in the period between 1991 and 2000 measured on seven Hungarian meteorological stations. Empirical distribution of measured monthly average wind speeds is approximated by theoretical distributions to claim that certain distributions are universal, i.e. independent of orography. We used one of them, the Weibull distribution, to generate the distribution of monthly average wind speeds on levels different from anemometer altitude as well, then we calculate the averages for the entire period and we fit a power function on them. Thus we can demonstrate a correlation between Hellmann's wind profile law and the Weibull distribution.  相似文献   

18.
In this work, a statistical analysis of wind energy potential in Maiduguri is carried out, using Weibull distribution and 10 years (1995–2004) of wind data. The results show the Weibull distribution parameter C and K, the probability function T (V), the velocity frequency distribution f (V), the energy and power densities. The cost benefit analysis shows the economic feasibility of using wind energy conversion systems for electric power generation and supply in Maiduguri.  相似文献   

19.
J.K. Kaldellis   《Renewable Energy》2008,33(7):1665-1677
According to long-term wind speed measurements the Aegean Archipelago possesses excellent wind potential, hence properly designed wind energy applications can substantially contribute to fulfill the energy requirements of the island societies. On top of this, in most islands the electricity production cost is extremely high, while significant insufficient power supply problems are often encountered, especially during the summer. Unfortunately, the stochastic behaviour of the wind and the important fluctuations of daily and seasonal electricity load pose a strict penetration limit for the contribution of wind energy in the corresponding load demand. The application of this limit is necessary in order to avoid hazardous electricity grid fluctuations and to protect the existing thermal power units from operating near or below their technical minima. In this context, the main target of the proposed study is to present an integrated methodology able to estimate the maximum wind energy penetration in autonomous electrical grids on the basis of the available wind potential existing in the Aegean Archipelago area. For this purpose a large number of representative wind potential types have been investigated and interesting conclusions have been derived.  相似文献   

20.
M.R. Islam  R. Saidur  N.A. Rahim 《Energy》2011,36(2):985-992
The wind resource is a crucial step in planning a wind energy project and detailed knowledge of the wind characteristic at a site is needed to estimate the performance of a wind energy project. In this paper, with the help of 2-parameter Weibull distribution, the assessment of wind energy potentiality at Kudat and Labuan in 2006-2008 was carried out. “WRPLOT” software has been used to show the wind direction and resultant of the wind speed direction. The monthly and yearly highest mean wind speeds were 4.76 m/s at Kudat and 3.39 m/s at Labuan respectively. The annual highest values of the Weibull shape parameter (k) and scale parameter (c) were 1.86 and 3.81 m/s respectively. The maximum wind power density was found to be 67.40 W/m2 at Kudat for the year 2008. The maximum wind energy density was found to be 590.40 kWh/m2/year at Kudat in 2008. The highest most probable wind speed and wind speed carrying maximum energy were estimated 2.44 m/s at Labuan in 2007 and 6.02 m/s at Kudat in 2007. The maximum deviation, at wind speed more than 2 m/s, between observed and Weibull frequency distribution was about 5%. The most probable wind directions (blowing from) were 190° and 269° at Kudat and Labuan through the study years. From this study, it is concluded that these sites are unsuitable for the large-scale wind energy generation. However, small-scale wind energy can be generated at the turbine height of 100 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号