首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diamond-like carbon films, grown on microscope slides by a dual-ion beam sputtering system, were implanted by 110 keV N+ under the doses of 1 × 1015, 1 × 1016 and 1 × 1017ions cm−2 respectively. The implantation induced changes in electrical resistivity of the films and in infrared (IR) transmittance of the specimens were investigated as a function of implantation dose. The structural changes of the films were also studied using IR spectroscopy and Raman spectroscopy. It was observed that, with the increase of implantation dose, the diamond-like carbon films display two different stages in electrical and optical behaviours. The first is the increase of both the film resistivity and the IR transmittance of specimen at the dose of 1 × 1015 ions cm−2 which, we consider, is attributed to the implantation-induced increase sp3 C---H bonds. However, when the doses are higher than 1 × 1015 ions cm−2, the film resistivity and the IR transmittance of specimen decrea significantly and the decrease rates at dose range of 1×1016 to 1×1017 ions cm−2 are smaller than those between 1×1015 and 1 × 1016 ions cm−2. We conclude that the significant reductions of the two parameters at high doses are caused by the decreases of bond-angle disorder and of sp3 C---H bonds, the increases of sp2 C---C bonds dominated the crystallite size and/or number and also the sp2 C---H bonds. The smaller decrease rates at a dose range of 1 × 1016 to 1 × 1017 ions cm−2 may be caused by further recombination of some retained hydrogen atoms to carbon atoms.  相似文献   

2.
In order for hot-wire chemical vapor deposition to compete with the conventional plasma-enhanced chemical vapor deposition technique for the deposition of microcrystalline silicon, a number of key scientific problems should be cleared up. Among these points, the concentration of tungsten (nature of the filament), as well as the concentration of oxygen and carbon (elements issued when vacuum is broken between two runs), should not exceed threshold values, beyond which electronic properties of the films could be degraded, as in the case of monocrystalline silicon. Quantitative chemical analysis of these elements has been carried out using the secondary ion mass spectrometry technique through depth profiles. It has been shown that for a high effective filament surface area (Sf=27 cm2), the W content increases steadily from 5×1014 to 2×1018 atoms cm−3 when the filament temperature Tf increases from 1500 to 1800 °C. For a fixed Tf, the W content increases with the effective surface area Sf. Thus, considering our reactor geometry, the W content does not exceed the detection limit (5×1014 atoms cm−3) when Tf and Sf are limited to 1600 °C and 4 cm2, respectively. For O and C elements, under deposition conditions of high dilution of silane in hydrogen (96%), O and C concentrations approaching 1020 atoms cm−3 have been obtained. The introduction of an inner vessel inside the reactor, the addition of a load-lock chamber and a decrease in substrate temperature to 300 °C have led to a drastic decrease in these contents down to 3×1018 atoms cm−3, compatible with the realization of 6% efficiency HWCVD μc-Si:H solar cells.  相似文献   

3.
The dielectric properties and electrical conductivity of AlN films deposited by laser-induced chemical vapour deposition (LCVD) are studied for a range of growth conditions. The static dielectric constant is 8.0 ± 0.2 over the frequency range 102−107 Hz and breakdown electric fields better than 106 V cm−1 are found for all films grown at temperatures above 130°C. The resistivity of the films grown under optimum conditions (substrate temperature above 170°C, NH3/TMA flow rate ratio greater than 300 and a deposition pressure of 1–2 Torr) is about 1014 Ω cm and two conduction mechanisms can be identified. At low fields, F < 5 × 105 V cm−1 and conductivity is ohmic with a temperature dependence showing a thermal activation energy of 50–100 meV, compatible with the presumed shallow donor-like states. At high fields, F > 1 × 106 V cm−1, a Poole-Frenkel (field-induced emission) process dominates, with electrons activated from traps at about 0.7–1.2 eV below the conduction band edge. A trap in this depth region is well-known in AlN. At fields between 4 and 7 × 105 V cm−1 both conduction paths contribute significantly. The degradation of properties under non-ideal growth conditions of low temperature or low precursor V/III ratio is described.  相似文献   

4.
Present experiments which search for an electric dipole moment (EDM) of the neutron use ultra-cold neutrons (UCN) and are limited by counting statistics. One way to solve this problem is to improve the source of UCN. The present article briefly reviews two possibilities which employ solid deuterium at the temperature of liquid helium. The possibility of installing a solid deuterium UCN source at the FRM-II reactor and at spallation neutron sources at PSI, LANL and KEK is discussed. An increase of the UCN density up to the level of 103–104 cm−3 is expected. Compared to existing sources, this corresponds to an improvement by two to three orders of magnitude. Such experimental facilities will make it possible to improve measurements of the EDM of the neutron down to the level of 10−27 e cm.  相似文献   

5.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

6.
Molybdenum ions generated by a metal vapour vacuum arc (MEVVA) ion source were implanted into pure iron at doses of 1 × 1017 and 3 × 1017 ions cm−2 with an extraction voltage of 45 kV. Auger electron spectroscopy (AES) sputtering depth profiles, X-ray photoelectron spectroscopy (XPS) analysis, X-ray diffraction (XRD) analysis, microhardness and the residual stress of the implanted specimen were studied. The results show that molybdenum atoms exist in the implanted layer at a maximum concentration 20 at.%. A new phase (Fe3C) is formed in the specimens implanted higher doses due to carbon incorporation during sputtering of the natural oxide film from the implanted surface. The Fe2Mo phase is formed in both dose regimes. Residual compressive stresses of 310 and 560 MPa were measured on the surfaces of the specimens after molybdenum ion implantation at 1 × 1017 and 3 × 1017 ions/cm2 respectively due to a local expansion of the lattice in the near-surface region. Due to the existence of residual compressive stress and the formation of the new phases, the microhardness of pure iron specimens was increased from 264 to 325 and 333 kgf mm−2 by molybdenum ion implantation at 1 × 1017 and 3 × 1017 ions cm−2 respectively.  相似文献   

7.
Catalytic chemical vapor deposition (Cat-CVD) has been developed to deposit alumina (Al2O3) thin films on silicon (Si) crystals using N2 bubbled tri-methyl aluminum [Al(CH3)3, TMA] and molecular oxygen (O2) as source species and tungsten wires as a catalyzer. The catalyzer dissociated TMA at approximately 600 °C. The maximum deposition rate was 18 nm min−1 at a catalyzer temperature of 1000 °C and substrate temperature of 800 °C. Metal oxide semiconductor (MOS) diodes were fabricated using gates composed of 32.5-nm-thick alumina film deposited at a substrate temperature of 400 °C. The capacitance measurements resulted in a relative dielectric constant of 7.4, fixed charge density of 1.74×1012 cm−2, small hysteresis voltage of 0.12 V, and very few interface trapping charges. The leakage current was 5.01×10−7 A cm−2 at a gate bias of 1 V.  相似文献   

8.
The magnetic field profile of an electron cyclotron resonance microwave plasma was systematically altered to determine subsequent effects on a-Si:H film quality. The mobility gap deep density ND deposition rate and light-to-dark conductivity were determined for the a-Si:H films. By variation of the magnetic field profile ND could be altered by more than an order of magnitude, from 1 × 1016 to 1 × 1017 cm−3 at 0.7 mTorr and 1 × 1016 to 5 × 1017 cm−3 at 5 mTorr as determined by junction capacitance techniques. Two deposition regimes were found to occur for the conditions of this study. Highly divergent magnetic fields resulted in poor quality a-Si:H, while for magnetic field profiles defining a more highly confined plasma, the a-Si:H was of device quality and relatively independent of the magnetic field configuration. The data is interpreted as a consequence of silane depletion for highly divergent magnetic field profiles.  相似文献   

9.
X-ray diffraction (XRD), current–voltage (IV), capacitance–voltage (CV), deep-level transient Fourier spectroscopy (DLTFS) and isothermal transient spectroscopy (ITS) techniques are used to investigate the thermal annealing behaviour of three deep levels in Ga0.986In0.014As heavily doped with Si (6.8 × 1017 cm−3) grown by molecular beam epitaxy (MBE). The thermal annealing was performed at 625 °C, 650 °C, 675 °C, 700 °C and 750 °C for 5 min. XRD study shows good structural quality of the samples and yields an In composition of 1.4%. Two main electron traps are detected by DLTFS and ITS around 280 K, with activation energies of 0.58 eV and 0.57 eV, capture cross sections of 9 × 10−15 cm2 and 8.6 × 10−14 cm2 and densities of 2.8 × 1016 cm−3 and 9.6 × 1015 cm−3, respectively. They appear overlapped and as a single peak, which divides into two smaller peaks after annealing at 625 °C for 5 min.

Annealing at higher temperatures further reduces the trap concentrations. A secondary electron trap is found at 150 K with an activation energy of 0.274 eV, a capture cross section of 8.64 × 10−15 cm2 and a density of 1.38 × 1015 cm−3. The concentration of this trap level is also decreased by thermal annealing.  相似文献   


10.
Ohmic contacts to the top p-type layers of 4H-SiC p+–n–n+ epitaxial structures having an acceptor concentration lower than 1×1019 cm−3 were fabricated by the rapid thermal anneal of multilayer Al/Ti/Pt/Ni metal composition. The rapid thermal anneal of multilayer A1/Ti/Pt/Ni metal composition led to the formation of duplex cermet composition containing Ni2Si and TiC phases. The decomposition of the SiC under the contact was found to be down to a depth of about 100 nm. The contacts exhibited a contact resistivity Rc of 9×10−5 Ω cm−2 at 21°C, decreasing to 3.1×10−5 Ω cm−2 at 186°C. It was found that thermionic emission through the barrier having a height of 0.097 eV is the predominant current transport mechanism in the fabricated contacts.  相似文献   

11.
We report results of high-dose Al-ion implantation in 4H–SiC. Using multiple energy implantation techniques, box profiles were realized with targeted concentrations: 3.33×1018 to 1021 cm−3. The depths were 190 and 420 nm. The implantation energies ranged from 30 to 200 keV. The implantation and annealing temperatures were 650 and 1670°C, respectively. First, infrared investigations were done to assess the surface quality of the samples before and after annealing. Next, the conduction mechanism was investigated. Performing Hall measurements, we found that the room temperature free hole concentration varies like pH=Ct/105 (cm−3), where Ct is the targeted Al-concentration, with a high level of electronic mobility. For the targeted concentration 1021 cm−3, this resulted in an active layer with 95 mΩ cm resistivity and, at room temperature, a free hole concentration of 1019 cm−3.  相似文献   

12.
Oxide layers produced by the thermal oxidation of silicon in an oxidising atmosphere containing trichloroethylene show better properties when used in MOS transistors. The dielectric strength is improved, and the surface state density is reduced from about 2.8 × 1011 cm−2 to 1.0 × 1011 cm−2 compared with normally oxidised silicon.  相似文献   

13.
The optical absorption (hν) and Raman and Infra Red (IR) spectra of Si doped GaN layers deposited on sapphire through buffer layers have been recorded for electron concentrations from 5×1017 to 5×1019 cm−3. The (hν) values deduced from photothermal deflection spectroscopy (0.5–3.5 eV) and IR absorption (0.15–0.5 eV) vary between 50 and 104 cm−1 showing doping dependant free electron absorption at low energy, doping independant band gap at high energy, and slowly doping dependant defect absorption in the medium energy range. In our micro Raman geometry, maxima appear or can be deduced near the frequency expected for either the A1(LO) or the A1(LO+) modes split from the A1(LO) mode by plasmon phonon interaction. There is a large systematic evolution in the expected way for the IR reflectivity.  相似文献   

14.
The temperature dependencies of the nanosecond multiphonon relaxation (MR) rates of the 3F3 state of Tm3+ in the YLF crystal and of the 5F5 state of Ho3+ ion in the YAG and LuAG crystals and of the microsecond MR rates of the 4F9/2 (2H9/2) state of Er3+ ions in YLF were measured in the wide temperature range using direct laser excitation and selective fluorescence kinetics decay registration. For YLF the observed relations are explained by 4-phonon process in the frame of a single-frequency model with hωeff=450±30 cm−1 for the 3F3 state of Tm3+ and by 5-phonon process with hωeff=445 cm−1 for the 4F9/2 (2H9/2) state of Er3+. For YAG and LuAG crystals these dependencies are explained by the 3-phonon process with hωeff=630 cm−1. The decrease of the relaxation rate with the temperature in the range from 13 to 80 K was observed for the 4F9/2 (2H9/2) state of Er3+ in the YLF crystal. It is explained by the redistribution of excited electronic states population of erbium ions over the higher lying Stark levels with different MR probabilities. A good fit of experimental temperature dependence (including the dropping part of the experimental curve) was obtained for single-frequency model (hωeff=450 cm−1) with W01=8.0×104 s−1 and W02=4.7×104 s−1 accounting Boltzmann distribution of population over two excited Stark levels of the excited state of erbium ions. Employment of this model improves the fit between the experiment and the theory for the 5F5 state of Ho3+ ion in YAG as well. Strong influence of the parameters of the non-linear theory of MR, i.e. the reduced matrix elements U(k) of electronic transitions and the phonon factor of crystal matrix η on the spontaneous MR rates was observed experimentally. The smaller these parameters the slower the spontaneous MR W0. This fact can be used for searching new active crystal laser media for the mid-IR generation.  相似文献   

15.
Lead barium niobate is a new photorefractive material of high interest for a variety of applications including holographic storage. Pb0.5Ba0.5Nb2O6 crystals have been grown by the Bridgman method, and the effects of heat treatments on their photorefractive properties were investigated using Ar ion laser at λ=514.5 nm. The color and absorption spectrum of the crystals varied depending on the oxygen partial pressure during heat treatment. The oxygen diffusivity was estimated to be in the order of 10−6 and 10−5 cm2/h at 425 and 550 °C, respectively. Reduction treatment at an oxygen pressure of 215 mTorr increased the effective density of photorefractive charges about three times from 8.0×1015 to 2.2×1016 cm−3 and made the charge transport more electron-dominant. As a result, the maximum gain coefficient improved from 5.5 to 13.8 cm−1. A diffraction efficiency as high as 70% was achieved in a reduced crystal.  相似文献   

16.
In this paper we report on surface nitridation of SiO2 and on photoresist removal by using species decomposed from NH3 or H2 and generated by a heated tungsten catalyzer. The top surface of SiO2/Si(100) is nitrided at temperatures as low as 300 °C using species decomposed from NH3 species. The removal of heavy-doped, as high as 1×1016 cm−2, ion-implanted photoresist is realized using atomic hydrogen.  相似文献   

17.
High-resistivity p+–n–n+ planar diodes were irradiated with neutrons to fluences up to 2×1014 cm−2 1 MeV neutron NIEL equivalent and with pions to 0.47×1014 cm−2. Special care was taken to irradiate samples under strictly controlled conditions (temperature, bias). The influence of detector biasing on the effective dopant concentration as measured with the C–V method was studied. Permanently biased diodes exhibit about two times higher |Neff| after beneficial annealing has been completed. After switching off the bias the difference between biased and unbiased samples diminishes with a temperature-dependent annealing time. Part of the difference is attributed to a bistable defect since it recovers if the bias is re-applied for a few days at room temperature. The bias-induced damage was estimated to result in a 40–70 V addition to required bias for detectors in the ATLAS SCT after 10 years of LHC operation.  相似文献   

18.
A 252Cf fission fragment source was used to produce heavy-ion radiation damage in a double-sided silicon strip detector. It was found that a good quality fission fragment spectrum (as determined by the peak to valley ration NL/NV) could not be achieved for radiation incident on the p+ face of the detector. However, for radiation incident on the n+ face, the ratio NL/NV remained adequate up to an accumulated dose of 4×106 fragments mm−2. For the measurement of alphas, typical resolution deteriorated from an initial 30 keV FWHM to 50 keV FWHM at a dose of 8×106 fragments mm−2 for incident on the n+ face, and 6×106 for radiation incident on the p+ face. The interstrip resistance in one region of the n+ face broke down completely after a relatively small radiation doses incident on that face. Further investigation of this is still required.  相似文献   

19.
This paper embodies the first report on the electrochemical deposition of RuS2 thin films. The as-deposited and heat-treated films (in argon atmosphere) were characterized by XRD, SEM and UV-VIS-NIR spectrophotometry. The polycrystalline deposits of RuS2 obtained indicated a cubic structure with a lattice constant of 5.685 Å, an average grain size around 3 μm, and an absorption co-efficient of 5 × 104 cm−1. The optical band gap was found to be 1.48 eV.  相似文献   

20.
The lattice matched Ga0.94In0.06As0.13Sb0.87 quaternary solid solutions were grown by liquid phase epitaxy on (1 0 0) oriented InAs substrates from In rich melt. The p-type GaIn0.06As0.13Sb layers were intentionally undoped and their hole concentration was about p5×1016 cm−3, while n-type GaIn0.06As0.13Sb layers were slightly doped with Te and their electron concentration was about n1017 cm−3. Photoluminescence spectra exhibit single unresolved emission band in the spectral region from 0.65 to 0.8 eV for both types. Spectra were decomposed to elementary Gaussian components. The main mechanisms of radiative recombination were determined for both types of material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号