首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silage is an important feed source for intensive dairy herds worldwide. Fungal growth and mycotoxin production before and during silage storage is a well-known phenomenon, resulting in reduced nutritional value and a possible risk factor for animal health. With this in mind, a survey was conducted to determine for the first time the occurrence of mycotoxins in corn and wheat silage in Israel. A total of 30 corn and wheat silage samples were collected from many sources and analysed using a multi-mycotoxin method based on LC-MS/MS. Most mycotoxins recorded in the present study have not been reported before in Israel. Overall, 23 mycotoxins were found in corn silage; while wheat silage showed a similar pattern of mycotoxin occurrence comprising 20 mycotoxins. The most common post-harvest mycotoxins produced by the Penicillium roqueforti complex were not found in any tested samples, indicative of high-quality preparation and use of silage. Moreover, none of the European Union-regulated mycotoxins – aflatoxin B1, ochratoxin, T-2 toxin, diacetoxyscirpenol and deoxynivalenol – were found above their limits of detection (LODs). The Alternaria mycotoxins – macrosporin, tentoxin and alternariol methyl ether – were highly prevalent in both corn and wheat silage (>80%), but at low concentrations. The most prominent (>80%) Fusarium mycotoxins in corn silage were fusaric acid, fumonisins, beauvericin, monilifomin, equisetin, zearalenone and enniatins, whereas in wheat silage only beauvericin, zearalenone and enniatins occurred in more than 80% of the samples. The high prevalence and concentration of fusaric acid (mean = 765 µg kg–1) in Israeli corn silage indicates that this may be the toxin of highest potential concern to dairy cow performance. However, more data from different harvest years and seasons are needed in order to establish a more precise evaluation of the mycotoxin burden in Israeli silage.  相似文献   

2.
An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) multi-mycotoxin analytical method was developed to simultaneously identify and quantify 20 mycotoxins in grass silages, inclusive of mycotoxins that are currently regulated in European Union feeds. Extraction of mycotoxins from dried grass silages was performed using of a modified QuEChERS extraction employing an acidified aqueous extraction (0.1 N HCl) with no further clean-up. Following chromatographic separation, analytes were detected using a fast polarity-switching MS/MS method that allowed both positive and negative ions to be analysed from a single injection, thus the reducing time and cost of analysis. The limits of detection and quantification ranged between 3 µg kg–1 DM (aflatoxin B1, beauvericin and enniatin A and A1) and 200 µg kg–1 DM (deoxynivalenol), and between 10 µg kg–1 DM (aflatoxin B1, beauvericin and enniatin A1) and 500 µg kg–1 DM (deoxynivalenol), respectively. Inter-assay accuracy and precision ranged between 90% and 107% and between 3.9% and 15.0% CV, respectively. The accuracy of the method was assessed through the application to a range of incurred samples in an inter-laboratory study.  相似文献   

3.
The objective of this experiment was to partially replace corn silage with 2 alternative forages, wheat (Triticum aestivum) or triticale (X Triticosecale) silages at 10% of the diet dry matter (DM), and investigate the effects on dairy cow productivity, nutrient utilization, enteric CH4 emissions, and farm income over feed costs. Wheat and triticale were planted in the fall as cover crops and harvested in the spring at the boot stage. Neutral- and acid-detergent fiber and lignin concentrations were higher in the wheat and triticale silages compared with corn silage. The forages had similar ruminal in situ effective degradability of DM. Both alternative forages had 1% starch or less compared with the approximately 35% starch in corn silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, wheat or triticale silages were included at 10% of dietary DM, replacing corn silage. Dry matter intake was not affected by diet, but both wheat and triticale silage decreased yield of milk (41.4 and 41.2 vs. 42.7 ± 5.18 kg/d) and milk components, compared with corn silage. Milk fat from cows fed the alternative forage diets contained higher concentrations of 4:0, 6:0, and 18:0 and tended to have lower concentrations of total trans fatty acids. Apparent total-tract digestibility of DM and organic matter was decreased in the wheat silage diet, and digestibility of neutral-and acid-detergent fiber was increased in the triticale silage diet. The wheat and triticale silage diets resulted in higher excretion of urinary urea, higher milk urea N, and lower milk N efficiency compared with the corn silage diet. Enteric CH4 emission per kilogram of energy-corrected milk was highest in the triticale silage diet, whereas CO2 emission was decreased by both wheat and triticale silage. This study showed that, at milk production of around 42 kg/d, wheat silage and triticale silage can partially replace corn silage DM and not affect DM intake, but milk yield may decrease slightly. For dairy farms in need of more forage, triticale or wheat double cropped with corn silage may be an appropriate cropping strategy.  相似文献   

4.
The objective of this study was to evaluate the effects of feeding lactating dairy cows with regrowth silages from different 2- and 3-cut harvesting systems on milk production, efficiency of N, and energy utilization. Thirty Nordic Red cows were offered 5 experimental diets containing regrowth silages, crimped barley, and canola meal in replicated incomplete 5 × 4 Latin squares with four 21-d periods consisting of 14 d of feed adaptation and 7 d of sampling. Four second-cut silage diets were examined in a 2 × 2 factorial arrangement, enabling evaluation of effect of harvest time of the early or late first cut on second-cut silages, short or long regrowth interval within second cut, and their interaction on dairy cow performance. The third-cut silage diet harvested from early first cut and short regrowth interval of second-cut ley was compared with the second-cut silage diets to evaluate the difference in dairy cow performance between second- and third-cut silages. Postponing the first cut and extending the regrowth interval decreased dry matter intake (DMI), energy-corrected milk (ECM) yield, nutrient digestibility, and urinary energy output, but improved N efficiency (milk N/N intake). Postponing the first cut also decreased the efficiency of metabolizable energy use for lactation, but increased CH4 yield (CH4/DMI). Extending the regrowth interval decreased feed efficiency (ECM/DMI) and increased CH4 intensity (CH4/ECM). Thus, feeding regrowth silages in 2- or 3-cut systems harvested after an early first cut and short regrowth interval promoted better dairy performance and feed intake, and higher efficiency of feed and energy utilization, but with poorer N efficiency. Feeding third-cut silage improve milk yield and feed efficiency compared with second-cut silages.  相似文献   

5.
Maize samples collected from storage bins and feed mills in Northern Italy between 1995 and 1999 were surveyed for the occurrence of aflatoxin B1 (AFB1), zearalenone (ZEA), deoxynivalenol (DON) and fumonisin (FB1); further, ergosterol was analysed as a fungal growth marker. The incidence and mean content of AFB1 were generally low; nevertheless, a remarkable contamination was found in two samples (109 and 158 μg kg-1), while five others exceeded 20 μg kg-1. DON and ZEA mean levels were significantly higher in 1996 (2716 and 453 μg kg-1) with respect to the other years, when mean contents ranged from 7 to 30% and from 3 to 17%, respectively, expressed in per cent of 1996 contents. FB1 was present in all samples and was by far the most remarkable mycotoxin in Northern Italian maize, with the exception of samples from 1996. The average level was 3064 μg kg-1, 69.6% of samples resulted over 1000 μg kg-1 and 16.9% over 5000 μg kg-1. Significant correlations were found between ergosterol and the major mycotoxin(s) in each year (FB1 in 1995 and 1997-99; ZEA + DON in 1996). Consequently, ergosterol seems to be a good index of the toxicological quality of maize. Climatic conditions influenced the growth of different fungal species. In 1996, the first 20 days of October were extremely rainy; these weather conditions delayed the harvest until the first week of November and favoured the growth of DON and ZEA producing fungi and the synthesis of mycotoxins. On the contrary, the temperate and dry climate of the other years supported the growth of FB1-producing fungi.  相似文献   

6.
In the European Union, deoxynivalenol in cereals and cereal products is controlled by recent legislation with the objective of minimizing consumer exposure to this mycotoxin. Relatively few studies have examined the loss of Fusarium mycotoxins during processing and whether this is accurately reflected by the processing factors. The behaviour of deoxynivalenol, nivalenol and zearalenone during extrusion of naturally contaminated wholemeal wheat flour has been examined using pilot-scale equipment. Factors examined were temperature and moisture content. Concentrations of the three mycotoxins were little changed by extrusion although the amount of deoxynivalenol decreased at the lowest moisture content. However, this effect did not appear to be temperature-dependent, suggesting that the apparent loss is either due to binding or inability to extract the residue. Under some conditions, concentrations of the mycotoxins, particularly nivalenol, were higher after extrusion.  相似文献   

7.
This study examined the effects of primary growth (PG) and regrowth (RG) timothy-meadow fescue silages harvested at 2 stages of growth on feed intake, cell wall digestion and ruminal passage kinetics in lactating dairy cows. Four dairy cows equipped with rumen cannulas were used in a study designed as a 4 × 4 Latin square with 21-d periods. The experimental silages were offered ad libitum with 8 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Silages of PG were on average more digestible than RG silages. The concentration of neutral detergent fiber (NDF) and indigestible NDF (iNDF) increased and the concentration of digestible organic matter in dry matter (DM) of silages decreased with advancing maturity in PG and RG. Cows consumed more feed DM, energy, and protein and produced more milk when fed PG diets rather than RG diets. Delaying the harvest decreased DM intake and milk production in PG and RG. There were no differences between PG and RG in rumen pH, ammonia N, or total volatile fatty acid concentrations. The intake of N, omasal canal flow of total nonammonia N and microbial N, excretion of N in feces, and ruminal true digestibility of N were higher for PG than for RG diets. The efficiency of microbial N synthesis was not different between PG and RG. Intake and omasal canal flow of organic matter, NDF, and potentially digestible NDF (pdNDF) were higher in PG than in RG. Whole-diet digestibility of organic matter, NDF, or pdNDF in the rumen or in the total tract was not different between PG and RG despite the higher digestibility of PG silages measured in sheep. Rumen pool sizes of crude protein and iNDF were lower for PG diets, whereas the pool size of pdNDF was higher for PG diets than for RG diets. The rate of passage of iNDF was higher for PG diets than for RG diets, with no difference between them in rate of digestion or passage of pdNDF. The lower milk production in cows fed regrowth grass silages compared with primary growth silages could be attributed to the lower silage DM intake potential. Chemical composition of the silages, rumen fill, digestion and passage kinetics of NDF, or the ratio of protein to energy in absorbed nutrients could not explain the differences in DM intake between silages made from primary and regrowth grass.  相似文献   

8.
Study of mycotoxins in animal feeding stuffs has concentrated on the occurrence of aflatoxins and, to a lesser extent, other mycotoxins in cereals, raw materials and concentrate feeds. However, ruminant diets contain a high proportion of forage crops such as grass or maize silage, hay and straw. Under adverse growing, production or storage conditions, fungal spoilage is likely to occur with some degree of mycotoxin contamination. The mould flora of forage crops is likely to differ significantly from that of cereals and mycotoxin contamination, should it occur, could differ qualitatively and quantitatively. Information relating to forage crops as a potential source of mycotoxins is reviewed. Some field incidents and animal disease which may be mycotoxin related are discussed and analytical methods are reviewed. Information on dose and effect of candidate mycotoxins is given where available. The review suggests areas which the authors consider merit further study. Crown Copyright 1998.  相似文献   

9.
Most recent information on the occurrence of Fusarium Head Blight species and related mycotoxins in wheat grown in the Netherlands dates from 2001. This aim of this study was to investigate the incidence and levels of Fusarium Head Blight species and Fusarium mycotoxins, as well as their possible relationships, in winter wheat cultivated in the Netherlands in 2009. Samples were collected from individual fields of 88 commercial wheat growers. Samples were collected at harvest from 86 fields, and 2 weeks before the expected harvest date from 21 fields. In all, 128 samples, the levels of each of seven Fusarium Head Blight species and of 12 related mycotoxins were quantified. The results showed that F. graminearum was the most frequently observed species at harvest, followed by F. avenaceum and M. nivale. In the pre-harvest samples, only F. graminearum and M. nivale were relevant. The highest incidence and concentrations of mycotoxins were found for deoxynivalenol, followed by zearalenone and beauvericin, both pre-harvest and at harvest. Other toxins frequently found – for the first time in the Netherlands – included T-2 toxin, HT-2 toxin, and moniliformin. The levels of deoxynivalenol were positively related to F. graminearum levels, as well as to zearalenone levels. Other relationships could not be established. The current approach taken in collecting wheat samples and quantifying the presence of Fusarium Head Blight species and related mycotoxins is an efficient method to obtain insight into the occurrence of these species and toxins in wheat grown under natural environmental conditions. It is recommended that this survey be repeated for several years to establish inter-annual variability in both species composition and mycotoxin occurrence.  相似文献   

10.
This study conducted according to a 4 x 4 Latin square with 28 d periods and four ruminally cannulated Finnish Ayrshire cows investigated the effect of protein supplements differing in amino acid (AA) profile and rumen undegradable protein content on postruminal AA supply and milk production. Mammary metabolism of plasma AA and other nutrients were also studied. The basal diet (Control; 13.4% crude protein) consisted of grass silage and barley in a ratio of 55:45 on a dry matter basis. The other three isonitrogenous diets (17.0% crude protein) were control + fishmeal (FM), control + soybean meal (SBM), and control + corn gluten meal (CGM). The protein supplements replaced portions of dry matter of the control diet maintaining the silage to barley ratio constant for all diets. Dry matter intake was limited to 95% of the preexperimental ad libitum intake and was similar (mean 19.8 kg/d dry matter) across the diets. Protein supplements increased milk, lactose, and protein yields but did not affect yields of energy-corrected milk or milk fat. Milk protein yield response was numerically lowest for diet SBM. Protein supplements increased milk protein concentration but decreased milk fat and lactose concentrations. Microbial protein synthesis and rumen fermentation parameters were similar across the diets, except for an increased rumen ammonia concentration for diets supplemented with protein feeds. Protein supplements increased N intake, ruminal organic matter and N, and total tract organic matter, N, and neutral detergent fiber digestibilities. Protein supplements also increased N and AA flows into the omasum, with SBM giving the lowest and CGM the highest flows. This was associated with an unchanged microbial N flow and a higher undegraded dietary N flow. The omasal flows of individual AA reflected differences in total N flow and AA profile of the experimental diets. Differences in AA flows did not always reflect plasma AA concentrations. The results indicated that AA supply of dairy cows fed a grass silage-cereal diet can be manipulated using protein supplements differing in ruminal protein degradability and AA profile. Lower milk production response to SBM than that to FM and CGM appeared to be related mainly to lower N and AA supplies arising from a high ruminal protein degradability of SBM. Histidine appeared to be the first limiting AA for milk protein synthesis on the control diet. Mammary gland may regulate AA uptake according to requirements.  相似文献   

11.
Five Finnish ruminally cannulated Ayrshire cows were used in a 5 x 5 Latin square trial with 14-d periods to determine whether branched-chain amino acids (AA) are the second- or colimiting AA for milk protein synthesis on grass silage-cereal based diet. Mammary metabolism of AA as well as AA supply from the basal diet were also studied. Grass silage (17.5% crude protein) was given ad libitum with 9 kg/d as a cereal-based concentrate (13.8% crude protein). Treatments were basal diet without AA infusion (Control), abomasal infusion of AA mixture of His, Ile, Leu, and Val at 8.5, 14.9,27.9, and 18.3 g/d, respectively, AA mixture minus Ile, AA mixture minus Leu, and AA mixture minus Val. Glucose was infused on all treatments at 250 g/d. Amino acid infusions had no effect on dry matter intake (mean 19.2 kg/d), yields of milk (mean 25.3 kg/d), energy-corrected milk (mean 25.9 kg/d), milk protein (mean 807 g/d), lactose (mean 1261 g/d), or fat (mean 1056 g/d). Milk composition was not affected by the treatments. Plasma concentrations of His and Val responded to AA infusions but concentration of Ile increased only on treatment AA mixture minus Leu, and concentration of Leu only on treatment AA mixture minus Ile. Infusion of AA mixture of His, Ile, Leu, and Val decreased plasma concentrations of Arg, Lys, Met, Phe, and Tyr. Amino acid infusions did not affect concentrations of plasma urea and energy metabolites or AA utilization by the mammary gland. Based on unchanged production parameters, the supply of His or branched-chain AA seemed not to be limiting under the current dietary conditions. Changes in plasma AA concentrations suggest either antagonism between individual AA in absorption or increased partitioning of AA into the muscle tissues. About 75% of omasal canal nonammonia nitrogen flow (427 g/d) was of microbial origin, and AA profiles of microbial protein and omasal canal digesta were fairly similar. Postruminal AA supply seems to be dependent on the basal diet, but variation may exist even within the similar basal diets.  相似文献   

12.
This study examined the relationship between storage environmental factors (water activity (a w) (0.89–0.97) and temperature (15°C–30°C)), colonisation of wheat and maize by Fusarium graminearum and F. verticillioides respectively and the dry matter losses (DMLs) caused and quantified by contamination with deoxynivalenol (DON), zearalenone (ZEA) and fumonisins (FUMs) during storage. Fungal growth was assessed by the amount of CO2 produced under different interacting conditions of a w and temperature. DMLs were quantified using the cumulative CO2 data, and these were shown to increase as temperature and a w increased. The amount of DON, ZEA (wheat for human consumption) and FUMs (feed maize) produced was significantly affected by the storage conditions. The three toxins however showed different patterns of production. Optimum for DON was at the wettest conditions (0.97a w) and the highest temperature assessed (30°C), whereas for ZEA this shifted to 25°C. FUMs were produced in higher amounts in maize at 30°C and 0.97a w; however, at intermediate a w levels (0.955a w), the highest production occurred at 25°C followed by 20°C. Polynomial models were developed for the effect of the storage factors on DMLs and toxin production. DMLs under different environmental conditions were significantly correlated with DON and FUMs. DON contamination was above the EU limits in at least 80% of the wheat samples with DMLs >1%, whereas at least 70% of the same samples contained ZEA above the respective EU legislative limits. Similarly, at least 75% of the maize samples with DMLs?≥?0.9% exceeded the EU limits for the sum of FUMs in feed. These results show that it may be possible to use temporal CO2 production during storage of grains as an indicator of the level of contamination of the grain with mycotoxins.  相似文献   

13.
The effect of the degree of synchrony in the ruminal release of energy and nitrogen on microbial protein synthesis (MPS) was examined in cattle consuming grass silage (7.9 kg DM day−1) and a supplement of 1 kg day−1 of sucrose given as an intraruminal infusion. The sucrose was infused in three different patterns to induce varying degrees of synchrony of energy and nitrogen release. Four non‐lactating cows received four experimental treatments in a 4 × 4 Latin square design with periods lasting 14 days. The treatments were (1) the basal diet of silage alone given in two equal meals each day at 10.00 and 22.00 h (BASAL), supplemented with (2) 1.0 kg sucrose given as a continuous infusion (CONT), (3) 1.0 kg sucrose given as two 6‐h infusions starting at 10.00 and 22.00 h (SYNC) and (4) 1.0 kg sucrose given as two 6‐h infusions starting at 16.00 and 04.00 h (ASYNC). The different patterns of infusing the sucrose altered (P < 0.05) the pattern of variation in ruminal concentrations of ammonia and the molar proportions of acetic and butyric acids at times during the interval between meals but none of the sucrose treatments resulted in any increase in the ruminal concentration of lactic acid. All sucrose treatments increased (P < 0.05) MPS relative to BASAL by, on average, about 23 g day−1. The increase in MPS for the SYNC and ASYNC treatments were identical at 20 g kg−1 sucrose. It is concluded that synchronising the rates of ruminal release of energy and nitrogen had no effect on MPS. © 1999 Society of Chemical Industry  相似文献   

14.
This study examined the effects of gradually replacing grass silage with whole-crop barley silage on feed intake, ruminal and total tract digestibility, and milk yield in lactating dairy cows. Four dairy cows in early lactation, equipped with rumen cannulas, were fed 4 diets over four 21-d periods. The diets consisted of 4 forage mixtures of grass silage and whole-crop barley silage supplemented with 8.9 kg/d of concentrates [dry matter (DM) basis]. The proportion of barley silage in the forage was adjusted to 0, 0.20, 0.40, and 0.60 kg/kg of DM. Ruminal nutrient metabolism was measured on the basis of digesta flow entering the omasal canal. Ammonia concentrations and volatile fatty acid profiles were determined in the rumen fluid. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Replacement of grass silage with barley silage had no effect on DM, digestible organic matter, or neutral detergent fiber (NDF) intake, but starch intake increased, whereas nitrogen and digestible NDF (dNDF) intake decreased. Increases in the proportion of barley silage linearly decreased milk yield, and the molar proportion of acetate in the rumen, and increased that of propionate, butyrate, and valerate. Decreases in milk yield due to inclusion of barley silage were attributed to decreases in diet digestibility and nutrient supply to the animal. Barley silage linearly decreased organic matter digestibility in the total tract and NDF and dNDF digestibility in the rumen and the total tract, and decreased nonammonia N flow entering the omasal canal. No significant differences between diets were noted in the digestion rate of dNDF or passage rate of indigestible NDF from the rumen. Decreases in organic matter and NDF digestibility were attributed to the higher indigestible NDF concentration of barley silage compared with that of grass silage and to the smaller pool size of dNDF in the rumen.  相似文献   

15.
An automated method involving on-line clean-up and analytical separation in a single run using TurboFlow? reversed phase liquid chromatography coupled to a high resolution mass spectrometer has been developed for the simultaneous determination of deoxynivalenol, T2 toxin, HT2 toxin, zearalenone and fumonisins B1 and B2 in maize, wheat and animal feed. Detection was performed in full scan mode at a resolution of R?=?100,000 full width at half maximum with high energy collision cell dissociation for the determination of fragment ions with a mass accuracy below 5?ppm. The extract from homogenised samples, after blending with a 0.1% aqueous mixture of 0.1% formic acid/acetonitrile (43:57) for 45?min, was injected directly onto the TurboFlow? (TLX) column for automated on-line clean-up followed by analytical separation and accurate mass detection. The TurboFlow? column enabled specific binding of target mycotoxins, whereas higher molecular weight compounds, like fats, proteins and other interferences with different chemical properties, were removed to waste. Single laboratory method validation was performed by spiking blank materials with mycotoxin standards. The recovery and repeatability was determined by spiking at three concentration levels (50, 100 and 200% of legislative limits) with six replicates. Average recovery, relative standard deviation and intermediate precision values were 71 to 120%, 1 to 19% and 4 to 19%, respectively. The method accuracy was confirmed with certified reference materials and participation in proficiency testing.  相似文献   

16.
《Journal of dairy science》2023,106(1):274-293
The objectives were to determine the effects of incrementally applied improved nutrient management, alternative cropping practices, and advanced production technologies in a dual forage system of perennial grass and silage corn on nutrient composition and in vitro ruminal fiber digestibility of the forages and, using these data as inputs into the Cornell Net Carbohydrate and Protein System, to predict milk production, indicators of nitrogen (N) utilization, and N excretion of dairy cattle. Farm management systems (farmlets) included a conventional system with whole manure slurry broadcast to a late maturing corn hybrid and grass harvested with 5 cuts per year (F1); improved nutrient management with a separated manure system where the sludge was applied to corn and the liquid was applied to grass (F2); improved nutrient management and alternative cropping practices with separated manure, an early maturing corn hybrid interseeded with a relay winter cover crop, and grass harvested with 3 cuts per year (F3); and improved nutrient management and alternative cropping practices combined with advanced production technologies that included irrigation and a nitrification inhibitor (F4). The field trial was a randomized complete block design over 2 yr with 4 blocks each divided into grass and corn, 4 subplots within each block for each crop, and 2 replicates within each subplot. Diets were formulation with 60% forage and 40% concentrate where the grass and corn as silage was proportional to yield for land allocations of grass and corn of 80:20, 60:40, 40:60, and 20:80. Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.). The intensified management systems (F2, F3, and F4) increased the crude protein (CP) concentration of corn with no effects on starch concentration [32.1% dry matter (DM)] compared with the conventional system (F1). Decreasing cuts of grass from 5 to 3 reduced the CP concentration in the spring harvest (15.8% vs. 12.5% DM), and increased fiber concentration and reduced digestibility in the spring, summer, and fall harvests. A common concentrate was formulated for the conventional farmlet and then combined with the forages for each farmlet within each land allocation. Forages grown under intensified management to improve N capture increased the CP concentration of the diets. However, reducing the number of cuts of grass from 5 to 3, combined with the corn and relay crop to increase yield, reduced milk production across all land allocations. To complement the nutritive value of the forages grown under each management system and land allocation, the concentrates were reformulated, which reduced dietary CP, improved the indicators of N utilization (e.g., milk urea N and milk N efficiency), reduced N excretion, and improved milk yield with no differences among the farmlets. Increasing land allocated to corn supported higher milk yield at lower dietary CP concentrations (16.5% vs. 15.4% DM) with improved milk N efficiency and lower N excretion. Intensified agronomic management increased the CP of the combined forages decreasing the need for supplemental CP in the concentrate and could reduce the importation of feed N to the farm.  相似文献   

17.
This study examined the effects of red clover or grass silages cut at 2 stages of growth on feed intake, cell wall digestion, and ruminal passage kinetics in lactating dairy cows. Five dairy cows equipped with rumen cannulas were used in a study designed as a 5 × 5 Latin square with 21-d periods. Diets consisted of early-cut and late-cut grass and red clover silages and a mixture of late-cut grass and early-cut red clover silages offered ad libitum. All diets were supplemented with 9 kg/d of concentrate. Ruminal digestion and passage kinetics were assessed by the rumen evacuation technique. Apparent total-tract digestibility was determined by total fecal collection. The silage dry matter intake was highest when the mixed forage diet was fed and lowest with the early-cut red clover diet. Delaying the harvest tended to decrease DMI of grass and increase that of red clover. The intake of neutral detergent fiber (NDF) and potentially digestible NDF (pdNDF) was lower but the intake of indigestible NDF (iNDF) was higher for red clover diets than for grass diets. The rumen pool size of iNDF and the ratio of iNDF to pdNDF in the rumen contents were larger, and pool sizes of NDF and pdNDF were smaller for red clover than for grass silage diets. Outflow of iNDF and the ratio of iNDF to pdNDF in digesta entering the omasal canal were larger, and the outflow of pdNDF was smaller for red clover than for grass silage diets. The digestion rate (kd) of pdNDF was faster for red clover diets than for grass silage diets. Delaying the harvest decreased kd for grass but increased it for red clover silage diets. Observed differences in fiber characteristics of red clover and grass silages were reflected in ruminal digestion and passage kinetics of these forages. The low intake of early-cut red clover silage could not be explained by silage digestibility, fermentation quality, or rumen fill, but was most likely related to nutritionally suboptimal composition because inclusion of moderate quality grass silage improved silage intake. Increasing the maturity of ensiled red clover does not seem to affect silage dry matter intake as consistently as that of grasses.  相似文献   

18.
This study evaluated the effects of gradual replacement of a mixture of late-cut grass silage (LS) and barley with early-cut grass silage (ES) on milk production, CH4 emissions, and N utilization in Swedish Red cows. Two grass silages were prepared from the same primary growth of timothy grass sward but harvested 2 wk apart [11.0 and 9.7 MJ of metabolizable energy/kg of dry matter (DM)]. Four diets, fed as a total mixed ration, were formulated to meet the metabolizable energy and protein requirements of 35 kg of energy-corrected milk (ECM) by gradually replacing a mixture of LS and barley with ES (0, 33, 67, and 100% of the forage component of the diet), whereas the proportion of barley decreased from 47.2 to 26.6% of diet DM. Expeller canola meal was used as a protein supplement. Sixteen Swedish Red cows were used in 4 replicated 4 × 4 Latin squares. Cows were offered diets ad libitum and milked twice daily. Each period of 28 d comprised 14 d of diet adaptation followed by 14 d of data collection. Intake and milk yield were recorded daily, and milk samples were collected on d 19 to 21 and d 26 to 28 of each period. Diet digestibility was determined by grab sampling using indigestible neutral detergent fiber as an internal marker. Gas emissions were measured using the GreenFeed system (C-Lock Inc., Rapid City, SD). Dry matter intake (DMI) linearly decreased from 22.6 to 19.3 kg/d as the proportion of ES increased in the diet. The ECM yield did not differ among treatments, but milk protein yield decreased with increasing proportion of ES in the diet. Because of reduced DMI with increasing ES, feed efficiency (ECM/DMI) improved with an increased proportion of ES in the diet. Nitrogen efficiency (milk N/N intake) did not change despite a linear increase in milk urea N concentration from 9.7 (LS alone) to 11.9 mg/dL (ES alone) with graded replacement of LS and barley by ES in the diet. Lower DMI responses in ES diets were partly compensated for by increased organic matter digestibility (656 g/kg of DM for LS alone; 715 g/kg of DM for ES alone) related to improved forage digestibility at early harvesting. Total CH4 emissions and CH4 intensity (CH4/ECM) were not influenced by diet, but CH4 yield (CH4/DMI) increased linearly from 19.5 to 23.0 g/kg of DMI with greater inclusion of ES in the diet. In conclusion, replacing LS and barley with ES improved the conversion of feed to milk without increasing CH4 emissions or compromising N efficiency.  相似文献   

19.
Lactating dairy cows consuming a diet of grass silage and a cereal-based supplement containing feather meal were given intravenous infusions of amino acids to determine the first-limiting amino acid for milk production, methionine having been shown to be not-limiting in a previous experiment. The three infusion treatments were a mixture of methionine, lysine, histidine and tryptophan (4AA); the mixture without lysine (-Lys); and the mixture without histidine (-His). The 4AA treatment markedly increased the yield of milk protein by about 18% and this response was not diminished by omission of lysine. However, exclusion of histidine produced no response over basal, confirming histidine as the first-limiting amino acid. In a second experiment, lactating cows receiving a similar basal diet were used to examine the effects on milk production of progressively substituting avian blood meal (rich in histidine and poor in methionine) for part of the feather meal. Blood meal was substituted for 0, 0.10, 0.20 and 0.40 of the feather meal in the supplement. The yield of milk protein was increased by about 15% by the first level of inclusion of blood meal, but there was no further response beyond the first level of inclusion. The results of the feeding trial confirm that dietary addition of protein rich in histidine and of low ruminal degradability substantially increased milk production with this basal diet, although it should be noted that the calculated supply of all the essential amino acids were also increased, by varying degrees, by substitution of blood meal. The results of the two experiments are discussed in relation to the likely importance of histidine as a limiting amino acid in dairy cows consuming diets typical of those used in practice. © 1999 Society of Chemical Industry  相似文献   

20.
This study compared the effects of a grain-based conventional concentrate (GC) and a concentrate based on agro-industrial by-products (BC), fed with grass silage harvested at early (ES) or late (LS) maturity stage, on dairy performance, CH4 and CO2 emissions, and metabolic status of dairy cows. Twenty lactating Nordic Red cows averaging 81 d in milk and 31.9 kg of milk/d pre-trial were assigned to a replicated 4 × 4 Latin square design. Dietary treatments were in a 2 × 2 factorial arrangement. The silages were harvested 2 wk apart from the same primary growth grass ley. The GC was made from oats, barley and wheat, and soybean meal, whereas the BC contained sugar beet pulp, wheat bran, canola meal, distillers dried grains, palm kernel expeller, and molasses. The diets were fed ad libitum as total mixed rations and were formulated from 661 g/kg of silage, 326 g/kg of concentrate, and 13 g/kg of minerals on a dry matter basis. The BC supplied the cows with less energy. Despite this, milk yield and composition were unaffected by concentrate type, except that milk protein was 0.7 g/kg lower in cows fed BC than in those fed GC. These results were accompanied by a 44 g/kg decrease in total-tract digestibility of crude protein and a 54 g/kg increase in neutral detergent fiber digestibility for cows fed BC. Cows fed ES on average consumed 2 kg/d more dry matter and yielded 3.5 kg/d more milk, 149 g/d more protein, and 141 g/d more fat than cows fed LS. There were few interaction effects between concentrate and silage sources on daily intake and dairy performance. However, edible feed conversion ratio (human-edible output in animal/potentially human-edible feed) showed greater improvements with ES than LS when replacing GC with BC. Feeding diets with late-cut silage generally reduced digestibility and energy utilization efficiency, but improved N utilization efficiency. Feeding LS also led to greater CH4 yield and CH4/CO2 ratio, and higher plasma concentration of nonesterified fatty acids. Plasma parameters reflecting energy metabolism and inflammation were all within the normal ranges, indicating that the cows were in good health during the experiment. In conclusion, a conventional concentrate can be replaced by agro-industrial by-products without compromising production in early lactation dairy cows. However, silage maturity has a stronger effect on the production traits of dairy cows than type of concentrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号