首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
To assess the feasibility of the 31% Pu-MOX fuel rod design of reduced-moderation water reactor (RMWR) in terms of thermal and mechanical behaviors, a single rod assumed to be irradiated in the core of RMWR up to 106 GWd/tHM has been analyzed by a fuel performance code FEMAXI-RM which is an extended version of FEMAXI-6 code. In the analysis, design specifications of fuel rod and irradiation conditions have been input, and available models of both MOX fuel and UO2 fuel have been used as appropriate. The results are: fission gas release is several tens of percent, rod internal pressure does not exceed the coolant pressure, and the highest fuel center temperature is 2400 K, while cladding diameter increase caused by pellet swelling is within 1% strain. These predictions suggest that the MOX fuel rod integrity will be held during irradiation in RMWR, though actual behavior of MOX pellet swelling and cladding oxidation require to be investigated in detail.  相似文献   

2.
The objective of this study is to formulate a methodology to predict a fission gas release ratio of MIMAS MOX. An irradiated MIMAS MOX fuel with plutonium rich agglomerates was subjected to elemental analyses by electron probe micro analysis and secondary ion mass spectrometry in order to investigate xenon distribution. The results of the elemental analyses showed that the plutonium rich agglomerates at the periphery of the fuel pellet sample retained a high concentration of xenon as gas bubbles. Then, the results were used as reference data for modification of models in a fuel rod analysis code, FEMAXI-7. Using the modified FEMAXI-7, we applied an approach to prediction of fission gas release ratio of MOX fuel with plutonium rich agglomerates. In the approach, two separated analyses using FEMAXI-7 were performed for the plutonium rich agglomerates and the matrix. Fission gas release ratios obtained from the two analyses were processed through weighted-average with burnup ratios of the plutonium rich agglomerates and the matrix. Finally, the fission gas release ratios were compared with results of rod puncture tests. As a result of the comparison, it was confirmed that the proposed approach could well predict fission gas release ratio of MOX fuel with plutonium rich agglomerates.  相似文献   

3.
Plutonium concentrations and burnup at Pu spots were calculated in U-Pu mixed oxide (MOX) fuel pellets for light water reactors with the neutron transport and burnup calculation code VIMBURN. The calculation models were suggested for Pu spots and U matrices in a heterogeneous MOX fuel pellet. The calculated Pu concentrations and burnup at Pu spots were compared with the PIEs data in a MOX pellet (38.8 MWd/kgHM). The calculated Pu concentrations agreed by 5–18% with the measured ones, and the calculated burnup did by less than 10% with the estimated one with the measured Nd concentrations. Commercial PWR types of MOX fuels were also analyzed with the calculation code and the models. Burnup at Pu spot increased as the distance was greater from the radial center of a MOX fuel pellet. Burnup at Pu spots in the peripheral region became 3–5 times higher than pellet average burnup of 40 MWd/kgHM. The diameters (20–100 μm) of Pu spots were not found a significant factor for burnup at Pu spots. In the outer half volume region (outer than r/r o=0.7) of a MOX fuel pellet, burnup at Pu spots exceeded 70MWd/kgHM (the threshold burnup of microstructure change in UO2 fuel pellet) at pellet average burnup of 1430 MWd/kgHM.  相似文献   

4.
Pulse irradiation experiments with irradiated ATR/MOX fuel rods of 20MWd/kgHM were conducted at the NSRR in Japan Atomic Energy Research Institute to study the transient behavior of MOX fuel rod under reactivity initiated accident conditions. Four pulse irradiation experiments were performed with peak fuel enthalpy ranging from 335 J/g to 586 J/g, resulted in no failure of fuel rods. Relatively large radial deformation of the fuel rods due to pellet-cladding mechanical interaction occurred in the experiments with peak fuel enthalpy above 500 J/g. Significant fission gas release up to 20% was measured by rod puncture measurement. The generation of fine radial cracks in pellet periphery, micro-cracks and boundary separation over the entire region of pellet were observed. These microstructure changes might contribute to the swelling of fuel pellets during the pulse irradiation. This could cause the large radial deformation of fuel rod and high fission gas release when the pulse irradiation conducted at relatively high peak fuel enthalpy. In addition, fine grain structures around the plutonium spot and cauliflower structure in cavity of the plutonium spot were observed in the outer region of the fuel pellet.  相似文献   

5.
High burnup MOX and UO2 test rods were prepared from the fuel rods irradiated in commercial BWRs. Each test rod was equipped with a fuel center thermocouple and reirradiated in the Halden boiling water reactor (HBWR) in Norway. The burnups of MOX and UO2 test rods reached about 84GWd/tHM and 72GWd/t, respectively. Fuel temperature was measured continuously during the re-irradiation tests. Thermal conductivity change in high burnup fuel was evaluated from the results of comparison between the measured fuel temperature and the data calculated by using the fuel analysis code FEMAXI-6. The comparison results suggested that the thermal conductivity of MOX fuel pellets is comparable to that of UO2 fuel pellets in the high burnup region around 80 GWd/t. It is probable that the impurity effect of Pu atoms gradually diminishes with increasing burnup because other factors that affect pellet thermal conductivity, such as the accumulation effect of soluble fission products and irradiation-induced defects in crystal lattice, become dominant in a high burnup region.  相似文献   

6.
Power ramp test for He-pressurization effect on fission gas release (FGR) of about 42GWd/tUO2 boiling water reactor (BWR) fuel rods was analyzed by the fuel performance code FEMAXI-7. The experimental data were obtained with the two rods, which were base irradiated in the Halden reactor for 12 years (IFA-409), then subjected to the power ramp tests (IFA-535) to investigate the He-pressurization effect. The FEMAXI-7 calculations were performed by inputting rod specifications and experimental conditions in both the baseand test irradiations. The results showed that the calculations reasonably followed the trends of measured cladding elongation and FGR during the power ramp test, depending on the pellet temperature and fission gas atoms diffusion rate. Based on the calculated results, the reason that no apparent He-pressurization effect was observed in the experiment was considered to be caused by insufficient gas communication during strong pellet–clad mechanical interaction (PCMI) and enhanced gap thermal conductance by the solid–solid contact due to gap closure.  相似文献   

7.
8.
This paper summarizes the present status of a computer code that describes some of the main phenomena occurring in a nuclear fuel rod throughout its life. Temperature distribution, thermal expansion, elastic and plastic strains, creep, mechanical interaction between pellet and cladding, fission gas release, gas mixing, swelling, and densification are modeled. The modular structure of the code allows for the incorporation of models to simulate different phenomena and material properties. Collapsible rods can be also simulated.The code is bidimensional, assumes cylindrical symmetry for the rod and uses the finite element method to integrate the differential equations. The stress–strain and heat conduction problems are nonlinear due to plasticity and to the temperature dependence of the thermal conductivity. The fission gas inventory is calculated with a diffusion model, assuming spherical grains and using a one-dimensional finite element scheme. Pressure increase, swelling and densification are coupled with the stress field.Good results are obtained for the simulation of the irradiation tests of the first argentine prototypes of MOX fuels, where the bamboo effect is clearly observed, and of the FUMEX series for the fuel centerline temperature, the inside rod pressure and the fractional gas release.  相似文献   

9.
Attainable discharge burnups for oxide and hydride fuels in PWR cores were investigated using the TRANSURANUS fuel performance code. Allowable average linear heat rates and coolant mass fluxes for a set of fuel designs with different fuel rod diameters and pitch-to-diameter ratios were obtained by VIPRE and adopted in the fuel code as boundary conditions. TRANSURANUS yielded the maximum rod discharge burnups of the several design combinations, under the condition that specific thermal-mechanical fuel rod constraints were not violated. The study shows that independent of the fuel form (oxide or hydride) rods with (a) small diameters and moderate P/Ds or (b) large diameters and small P/Ds give the highest permissible burnups limited by the rod thermal-mechanical constraints. TRANSURANUS predicts that burnups of ∼74 MWd/kg U and ∼163 MWd/kg U (or ∼65.2 MWd/kg U oxide-equivalent) could be achieved for UO2 and UZrHx fuels, respectively. Furthermore, for each fuel type, changing the enrichment has only a negligible effect on the permissible burnup. The oxide rod performance is limited by internal pressure due to fission gas release, while the hydride fuel can be limited by excessive clad deformation in tension due to fuel swelling, unless the fuel rods will be designed to have a wider liquid metal filled gap. The analysis also indicates that designs featuring a relatively large number of fuel rods of relatively small diameters can achieve maximum burnup and provide maximum core power density because they allow the fuel rods to operate at moderate to low linear heat rates.  相似文献   

10.
The cladding lift-off experiments at Halden yield direct data for the maximum pressure to which a rod can be operated without causing a lasting fuel temperature increase. UO2 or MOX fuel segments irradiated to high burnup in light water reactors are equipped with a fuel thermocouple and a cladding extensometer. Gas lines attached to the end plugs are connected to a high pressure system for pressurisation with argon and a low pressure system for hydraulic diameter measurements to study cladding outward deformation and axial gas communication within the fuel rod.

The first experiment of the test series utilised a UO2 fuel segment irradiated in an LWR to 52 MWd/kgUO2. The test was operated for 4,400 h PWR conditions (155 bar, 310°C) provided by a loop system. The rod was pressurised starting at 205 bar and increasing to 455 bar in steps of 50 bar, while recording fuel centreline temperature and cladding elongation. The hold times at the different pressure levels were long enough to assess temperature trends.

The measured rates of fuel temperature increase suggest that the necessary overpressure to cause a discernible lasting temperature change was 130–145 bar, equivalent to a cladding hoop stress of 70–77 MPa.  相似文献   

11.
The author developed a code FEMAXI–V to analyze the behaviors of high burnup LWR fuels. FEMAXI–V succeeded the basic structure of code FEMAXI–IV, and incorporated such new models and functions as fuel thermal conductivity degradation with burnup, alliance with burnup analysis code which gives radial power profile and fast neutron flux, etc. In the present analysis, coolant conditions, detailed power histories and specifications of the fuel rods DH and DK of IFA-519.9 irradiated in Halden reactor were input, and calculated rod internal pressures were compared with experimental data for the range of 25–93 MWd kg−1 UO2, and factors affecting pellet temperature were discussed. Also some sensitivity studies were conducted with respect to the effect of swelling rate and grain growth. As a result, it is found that the prediction is sensitive to the models of thermal conductivity and swelling rate of fuel, and FEMAXI–V analytical system proved to give a reasonable prediction even in the high burnup region.  相似文献   

12.
Post-irradiation examinations (PIEs) of spent BWR-MOX and PWR-UO2 fuel rods irradiated in commercial LWRs and stored for 20 years were carried out to evaluate fuel integrity during storage. Average burn-up of five fuel rods of the BWR-MOX fuel was about 20 MWd/kgHM and that of the PWR-UO2 fuel was 58 MWd/kgHM. The PIE items included: (a) visual inspection of the cladding surface, (b) puncture test, (c) ceramographic observation on the pellet and cladding, (d) pellet density, (e) electron probe microanalysis of the pellet, (f) cladding tensile test, (g) hydrogen content and hydride orientation in the cladding, and (h) hydrogen redistribution in the cladding under temperature gradient. The PIE results showed no marked difference in the visual inspection, fission gas release, oxide layer thickness, pellet microstructure, and cladding mechanical properties or hydride orientation after storage. The result of the hydrogen redistribution experiment showed that hydrogen migration had little effect on the fuel integrity during dry storage. Hydrogen migration on the fuel rod for 40 years of storage was evaluated using the heat of transport obtained in the hydrogen redistribution experiment and calculated result showed that hydrogen migration had little effect on the fuel integrity during dry storage.  相似文献   

13.
For RIA-simulated experiments in the NSRR with high-burnup PWR fuel and BWR fuel, numerical analyses were performed to evaluate the temporal changes of profiles of temperature and thermal stress in pellet induced by pulse power, using the RANNS code. The pre-pulse states of rods were calculated using the fuel performance code FEMAXI-6 along the irradiation histories in commercial reactors and the results were fed to the RANNS analysis as initial conditions of the rod. One-dimensional FEM was applied to the mechanical analysis of the fuel rod, and the calculated cladding permanent strain was compared with the measured value to confirm the validity of the PCMI calculation. The calculated changes in the profiles of temperature and stress in the pellet during an early transient phase were compared with the measured data such as the internal gas pressure rise, cracks and grain structure in the post-test pellet, anddiscussed in terms of PCMI and grain separation. The analyses indicate that the pellet cracking appearances coincided with the calculated tensile stress state and that the compressive thermal stress suppresses the fission gas bubble expansion leading to grain separation.  相似文献   

14.
In order to obtain high burn-up MOX fuel irradiation performance data, SBR and MIMAS MOX fuel rods with Pufissile enrichment of about 6 wt% have been irradiated in the HBWR. In-pile performance data of MOX have been obtained, and the peak burn-up of MOX pellet have reached to 66 GWd/tM as of October 2004. MOX fuel temperature is confirmed to have no significant difference compared to UO2, if taking into account adequately for thermal conductivity degradation due to PuO2 addition and burn-up development, and measured fuel temperature agrees well with HB-FINE code calculation up to high burn-up region. Fission gas release of MOX is possibly larger than UO2 based on temperature and pressure assessment. No significant difference is confirmed between SBR and MIMAS MOX on FGR behaviour. MOX fuel swelling rate agrees well with solid swelling rate. Cladding elongation data shows onset of PCMI in high power region. Ramp test data from other experiment programs with various types of MOX fabrication route confirms superior PCI resistance of MOX compared to UO2, due to enhanced creep rate of MOX. The irradiation is expected to continue until achieving of 70 GWd/tM (MOX pellet peak).  相似文献   

15.
The fuels testing programme conducted in the Halden reactor (heavy boiling water reactor (HBWR)) is aimed at providing data for a mechanistic understanding of phenomena, which may affect fuel performance and safety parameters. The investigations focus on implications of high burnup and address thermal property changes, fission gas release as influenced by power level and operation mode, fuel swelling, and pellet–clad interaction. Relevant burnup levels (>50 MWd kg−1 U) are provided through long-term irradiation in the HBWR and through utilisation of re-instrumented fuel segments from commercial light water reactors (LWR). Both urania and MOX fuels are being studied regarding thermal behaviour, conductivity degradation, and aspects of fission gas release. Experiments are also conducted to assess the cladding creep behaviour at different stress levels and to establish the overpressure below which the combination of fuel swelling and cladding creep does not cause increasing fuel temperatures. Clad elongation measurements provide information on the strain during a power increase, the relaxation behaviour and the extent of a possible ratcheting effect during consecutive start-ups. Investigations foreseen in the programme period 2000–2002 include the behaviour of MOX and Gd-bearing fuel and other variants developed in conjunction with burnup extension programmes. Some LWR-irradiated fuel segments will undergo a burnup increase in the HBWR to exposures not yet achieved in LWRs, while others will be re-instrumented and tested for shorter durations.  相似文献   

16.
The radial distribution of fission gas (xenon) and other fission products (cesium, ruthenium, cerium) has been measured on UO2 fuel pellets irradiated in commercial pressurized water reactors to burnups between 13.23 and 48.26 GWd/tU. Fission gas release occurs from the pellet center, and at temperatures < 1300° C is confined to the region of grain growth. The maximum fractional release measured at the center ranges from 20% to 30%. Only at high burnup (48.26 GWd/tU) an additional release of cesium has been observed. This is considered as evidence for an increase in fission product release at higher burnups. At fuel center line temperature > 1500° C a high fission gas release is accompanied by a high cesium release. The local release starts at the onset of fission gas bubbles precipitating on grain boundaries and saturates in the center of the pellet at a fractional release value of about 90%.  相似文献   

17.
Studies of the rapid aqueous release of fission products from UO2 and MOX fuel are of interest for the assessment of the safety of geological disposal of spent fuel, because of the associated potential contribution to dose in radiological safety assessment. Studies have shown that correlations between fission gas release (FGR) and the fraction rapidly leached of various long-lived fission products can provide a useful method to obtain some of this information. Previously, these studies have been limited largely to fuel with burn-up values below 50 MWd/kg U. Collaborative studies involving SKB, Studsvik, Nagra and PSI have provided new data on short-term release of 137Cs and 129I for a number of fuels irradiated to burn-ups of 50–75 MWd/kgU. In addition a method for analysis of leaching solutions for 79Se was developed. The results of the studies show that the fractional release of 137Cs is usually much lower than the FGR covering the entire range of burn-ups studied. Fractional 129I releases are somewhat larger, but only in cases in which the fuel was forcibly extracted from the cladding. Despite the expected high degree of segregation of fission gas (and by association 137Cs and 129I) in the high burn-up rim, no evidence was found for a significant contribution to release from the rim region. The method for 79Se analysis developed did not permit its detection. Nonetheless, based on the detection limit, the results suggest that 79Se is not preferentially leached from spent fuel.  相似文献   

18.
New thermal diffusivity data for homogeneous SBR and heterogeneous MIMAS and OCOM MOX fuels are reported. No significant difference between the thermal diffusivity of the homogeneous and heterogeneous fuels was found at the burn-up up to 44 MWd/kgHM. These measurements, combined with previously published results or correlation functions for irradiated UO2 and MOX were compared and it was found that separate correlations for these two fuels are not justified. A correlation for the thermal conductivity of irradiated UO2 and MOX as a function of burn-up and irradiation temperature is proposed.  相似文献   

19.
Mechanical load on cladding induced by fuel swelling in a high burn-up BWR type rod was analyzed by a fuel performance code FEMAXI-6. The code was developed for the analysis of LWR fuel rod behaviors in normal operation and transient conditions using finite element method (FEM).During a power ramp for the high burn-up rod, instantaneous pellet swelling can significantly exceed the level that is predicted by a “steady-rate” swelling model, causing a large circumferential strain in cladding. This phenomenon was simulated by a new swelling model to take into account the fission gas bubble growth. As a result it was found that the new model can give reasonable predictions on cladding diameter expansion in comparison with PIE data. The bubble growth model assumes that the equilibrium state equation holds for a bubble under external pressure, and simultaneous solution is obtained with both bubble size determination equation and diffusion equation of fission gas atoms. In addition, a pellet-clad bonding model which has been incorporated in the code to assume solid mechanical coupling between pellet outer surface and cladding inner surface predicted the generation of bi-axial stress state in the cladding during ramp.  相似文献   

20.
To provide a data base for the regulatory guide of light water reactors, behavior of reactor fuels during off-normal and postulated accident conditions such as reactivity-initiated accident (RIA) is being studied in the Nuclear Safety Research Reactor (NSRR) program of the Japan Atomic Energy Agency (JAEA). The paper presents recent results obtained from the NSRR power burst experiments with high burnup fuels, and discusses effects of pellet expansion as PCMI (Pellet-Cladding Mechanical Interaction) loading and cladding embrittlement primarily due to hydrogen absorption. Results from the recent four experiments on high burnup (about 60 to 78 MWd/kgU) PWR UO2 rods with advanced cladding alloys showed that the fuel rods with improved corrosion resistance have larger safety margin against the PCMI failure than conventional Zircaloy-4 rods. The tests also suggested that the smaller inventory of inter-granular gas in the pellets with the large grain could reduce the fission gas release during the RIA transient; and high burnup structure in pellet periphery (so-called rim structure) does not have strong effect on reduction of the failure threshold because the PCMI load is produced primarily by solid thermal expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号