首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the 1980s, a series of integral experiments was conducted in FCA-IX assemblies with systematically changed neutron spectra covering from the intermediate to fast ones. The experiments provide systematic data of central fission rates for TRU nuclides containing minor actinides, 237Np, 238Pu, 239Pu, 242Pu, 241Am, 243Am, and 244Cm. Regarding the fission rate ratios relative to 239Pu, benchmark models had been recently developed for validation of nuclear data for the TRU's fission cross sections. In this paper, the latest major nuclear data libraries, JENDL-4.0, ENDF/B-VII.1, and JEFF-3.2, are compared on the benchmark models. For the libraries, the analyses by a Monte Carlo calculation code show obvious overestimations particularly for the fission rate ratios of 244Cm to 239Pu. Additionally, a large discrepancy about by 20% between the libraries is revealed for the fission rate ratio of 238Pu to 239Pu measured in the intermediate neutron spectrum. The causes of discrepancies are furthermore clarified by sensitivity analyses.  相似文献   

2.
The atomic fractions of 238Pu and 241Am in MOX fuels recycled in light water reactors are 1% to 2% and not significant compared with those of major Pu isotopes. On the other hand, recent evaluated nuclear data libraries, such as JENDL-4.0 and JEFF-3.2, give noticeably different thermal and epithermal neutron capture cross sections for 238Pu and 241Am. The thermal neutron capture cross sections of 238Pu and 241Am in JEFF-3.2 are 31% and 9% larger than those of JENDL-4.0, respectively. This paper shows the effect of the differences in the neutron cross sections on analysis results of two different integral experiments. The first is the isotopic compositions of 238Pu on UO2 and MOX fuels irradiated in BWR and PWR, and the second is the critical experiments of the water moderated cores fully loaded with MOX fuels. The former was analyzed by using the continuous energy Monte Carlo burnup calculation code MVP-BURN and the latter by the continuous energy Monte Carlo calculation code MVP. The comparisons between the calculated and measured results indicate that the most likely thermal and epithermal neutron capture cross sections of 238Pu and 241Am should be around at the middle between those of JEFF-3.2 and JENDL-4.0.  相似文献   

3.
A formulation has been established to estimate the error propagation in Monte-Carlo burnup calculations. The uncertainties in cross sections and the statistical errors in Monte-Carlo calculations are considered as error sources, and the error propagation of number densities of individual nuclides over a burnup period is formulated. The present formulation is applied to the burnup calculation of a simplified fast reactor core. The components of the errors in number densities due to the statistical error are up to 0.92% even when the history number is small as 104. On the other hand, the components due to the cross section error are about 2–5% for the number densities of 235U, 239Pu, 240Pu, 241Pu and 242Pu, and about 7.3% for the fission-product. Thus the contribution is mainly due to the cross section errors. The error propagation of the number densities due to the statistical errors at individual burnup steps is investigated by dividing the burnup period into two steps. The error propagation is not serious for the problem treated here because the component due to the statistical error is much smaller than that due to the cross section error.  相似文献   

4.
The perturbation theory based on the transport calculation has been applied to study sensitivity of neutron multiplication factors (keff's) to neutron cross sections used for the reactivity analysis of UO2 and MOX core physics experiments on light water reactors. The studied cross sections were neutron capture, fission and elastic scattering cross sections, and a number of fission neutrons, ν. The obtained sensitivities were multiplied to relative differences in the cross sections between JENDL-4.0 and JENDL-3.3 in order to estimate the reactivity effects. The results show that the increase in keff, 0.3%Δk/kk′, from JENDL-3.3 to JENDL-4.0 for the UO2 core is mainly attributed to the decreases in the capture cross sections of 238U. On the other hand, there are various contributions from the differences in the cross sections of U, Pu, and Am isotopes for the MOX cores. The major contributions to increase in keff are decreases in the capture cross sections of 238U,238Pu, 239Pu, and those to decrease in keff are decreases in ν of 239Pu and increases in the capture cross sections of241Am. They compensate each other, and the difference in keff between JENDL-3.3 and JENDL-4.0 is less than 0.1%Δk/kk′ and relatively small.  相似文献   

5.
For the precise calculation of the burnup of minor actinide isotopes, a code system-SWAT has been developed. This system analyzes burnup problems with neutron spectrum that depends on the type of a reactor and the irradiation history, using latest evaluated nuclear data files JENDL-3 or ENDF/B-Vl. The post irradiation test in TRINO and the recent experiment in typical PWRs in Japan were analyzed with SWAT. These analyses show that the results of U and Pu for high burnup fuels almost agree with experimental results but those for middle burnup fuels do not agree with them. The results for Am and Cm isotopes still have large discrepancy. The average C/E of 243Am is –0.79, and that of 244Cm is –0.70 for high burnup (–33,000 MWd/tU) samples.

For middle burnup (–25,000 MWd/tU) samples, the C/E for 244Cm is over 2.0. The discrepancy is partially explained by considering the power peaking history of first cycle and second cycle.  相似文献   

6.
The measured pellet average inventories of actinides and fission product nuclides on the fifteen samples taken from a three-cycle irradiation BWR 8×8-2 UO2 assembly were compared with those of assembly burnup calculations using a collision probability method (SRAC) with the JENDL-3.2 nuclear data library. The present calculations overestimate the inventories of 235U, well reproduce those of 239Pu and 240Pu, yet underestimate those of 236U, 237Nd, 238Pu, 241Pu, and 242Pu. The inventories of minor actinides are underestimated by the present analysis except for 241Am. The major FP nuclides contributing to neutron absorption such as Nd, Cs, Eu, and Sm are almost well reproduced by the present calculations. The measured pellet average burnups and major actinide inventories on the twenty samples taken from four BWR 8×8-4 UO2 assemblies were also compared with those of the burnup calculations using SRAC and a continuous energy Monte Carlo burnup analysis code (MVP-BURN). Most of the calculated pellet average burnups of both codes agree with the measurements within the range of ±10%. The general trends of the measured pellet radial distributions of actinide and FP nuclides on six samples of the 8×8-4 UO2 assemblies were well reproduced by the burnup calculations of MVP-BURN.  相似文献   

7.
As part of a validation study of burnup calculations of BWR cores, lattice physics analyses were performed on burnups and isotopic compositions of U, Pu and fission product nuclides measured on five samples taken from 9 × 9 BWR fuel assemblies. Burnup calculations in infinite assembly geometry were carried out using MVP-BURN and SRAC codes coupled with major nuclear data libraries. The burnups determined based on the Nd-148 method were from 27.9 to 64.2 GWd/t. The typical relative differences in isotopic compositions (atom/Total-U) between the burnup calculations and measurements were ?2 ~ 19% for 234U, ?20 ~ 3% for 235U, ?1.5 ~ 0.1% for 236U, ?0.04 ~ 0.02% for 238U, ?4 ~ 11% for 238Pu, ?11 ~ ?2% for 239Pu, ?3 ~ 0% for 240Pu, ?12 ~ ?2% for 241Pu and ?2 ~ 3% for 242Pu. They were ?2 ~ 2% for Nd isotopes, ?15 ~ 7% for Eu isotopes, ?13 ~ 1% for Cs isotopes, ?13 ~ 8% for Sm isotopes, 0 ~ 7% for 147Pm, ?7 ~ ?2% for 95Mo, ?2 ~ ?1% for101Ru and 0 ~ 4% for 103Rh.  相似文献   

8.
Criticality safety of the fuel debris from the Fukushima Daiichi Nuclear Power Plant is one of the most important issues, and the adoption of burnup credit is desired for criticality safety evaluation. To adopt the burnup credit, validation of the burnup calculation codes is required. Assay data of the used nuclear fuel irradiated by the Fukushima Daini Nuclear Power Plant Unit 2 are evaluated to validate the SWAT4.0 code for solving the BWR fuel burnup problem. The calculation results revealed that the number densities of many heavy nuclides and fission products show good agreement with the experimental data, except for those of 237Np, 238Pu, and samarium isotopes. These differences were considered to originate from inappropriate assumption of void fraction. Our results implied overestimation of the (n, γ) cross-section of 237Np in JENDL-4.0. The Calculation/Experiment – 1 (C/E–1) value did not depend on the type of fuel rod (UO2 or UO2–Gd2O3), which was similar to the case of PWR fuel. The differences in the number densities of 235U, 239Pu, 240Pu, 241Pu, 149Sm, and 151Sm have a large impact on keff. However, the reactivity uncertainty related to the burnup analysis was less than 3%. These results indicate that SWAT4.0 appropriately analyzes the isotopic composition of BWR fuel, and it has sufficient accuracy to be adopted in the burnup credit evaluation of fuel debris.  相似文献   

9.
Abstract

A series of benchmark tests was made to check the neutron nuclear data of main fissile nuclides (239Pu, 235U and 233U) of JENDL-3 for fast reactors. A total of nine critical assemblies were analyzed. They are assemblies of single material, high enrichment and simple geometry with small volume and therefore suitable for nuclear data testing. Criticality calculation was made by ANISN with S16P5 using the VITAMIN-J 175-energy-group. Discussions are made on keft, spectral indices at core center and leakage spectra.

From the study, a problem was pointed out relating to the interpolation of secondary-neutron energy distributions for threshold reactions near the threshold energy point adopted in the original JENDL-3 and its remedy was proposed. By the benchmark tests of thus JENDL-3 (JENDL-3.1), it was shown that integral experiments for 239Pu and 235U cores were reproduced quite satisfactorily. On the contrary, it was revealed that large deviations for 233U cores from the experiment were due to uncertainties of the fission spectrum and the inelastic scattering cross sections. In the present work, sensitivity of “a” parameter (level density parameter) of Madland-Nix's fission spectrum formula to the integral data was extensively studied. Some recommendations are made to improve JENDL-3.1.  相似文献   

10.
Measured isotopic compositions of UO2 and MOX fuel samples taken from irradiated light water reactor fuel assemblies were analyzed by CASMO5 coupled with a JENDL-4.0 base library to assess the uncertainties in the calculated isotopic compositions on heavy and fission product nuclides. The burnup calculations for the analysis were performed based on a single-assembly model taking into account the detail fuel assembly specifications and irradiation histories. For the MOX fuel samples, a multiple-assembly model was also adopted taking into account the effect of the surrounding UO2 fuel assemblies. The average and standard deviation of the biases (C/E ? 1's (here C and E are calculated and measured results, respectively)) were calculated for each nuclide separately on the PWR and BWR UO2 fuel samples. The averaged biases for 235U, 236U, 239Pu, 240Pu, 241Pu and 242Pu were 2.7%, ?0.9%, 0.3%, 0.7%, ?2.4% and ?1.7% for PWR UO2 samples, and 6.7%, ?1.5%, 2.5%, ?0.6%, 0.4% and ?0.1% for BWR UO2 samples, respectively. The biases with the single-assembly model on the MOX fuel samples showed large positive values of 239Pu, and application of the multiple-assembly model reduced the biases as reported in our previous studies.  相似文献   

11.
Burnup calculations with SARC system were carried out to analyse the effects of plutonium build-up on criticality of MTR type research reactor PARR-1 using several WIMSD libraries based on evaluated nuclear data files ENDFB-VI.8, JEF-2.2, JEFF-3.1 and JENDL-3.2. For equilibrium core of the reactor, it was found that a net reactivity of more than 3.5 mk is induced due to build-up of plutonium isotopes during depletion. The plutonium credit amounts to 3% of the length of equilibrium cycle. From the analysis of actinide production in the core during burnup, it was observed that in most of the cases, the amounts of actinides obtained using various cross section libraries agree fairly with each other, however, significant differences were observed for 238Pu, 241Pu, 242mAm, 243Am, 242Cm and 244Cm for some libraries. The actinide chain analysis was conducted to investigate the reasons for the observed differences.  相似文献   

12.
The sensitivity coefficients of neutronic performance parameters in high-conversion LWR cells have been calculated by means of the SAINT code. In order to show the specific features of the sensitivity coefficients in the HCLWR cells, the differences between sensitivities were investigated for cells with different moderator to fuel volume ratios and different Pu enrichments. The burnup dependence of the sensitivities was also discussed with an emphasis on the effect of fission products on the cell parameters.

We have performed the sensitivity analysis for the PROTEUS cores. Group constants of main heavy nuclides were compared for the different cell calculational methods; SRAC and VIM, and the different cross section libraries; JENDL-2 and ENDF/B-IV. The effect of the differences in group constants was estimated for the cell parameters k , reaction rate ratio and coolant void worth. The differences in the 238U capture and 239Pu fission group constants in the resolved and unresolved resonance range produced 0.3~1.0% change in k and 1~6% change in the coolant void worth. These effect was largely dependent on the coolant void fraction.  相似文献   

13.
In order to validate MVP-II, Haut Taux de Combustion (HTC) experiments were analyzed using a code with relatively new nuclear data libraries, JENDL-4.0, ENDF/B-VII.1, and JEFF-3.2. The effective neutron multiplication factor keff values were obtained through analyses of all phases of the HTC experiments. Consequently, the keff biases evaluated for each nuclear data library were within 300 pcm. Additionally, microscopic production and capture reaction rates of major actinide isotopes were analyzed to substantiate differences among the libraries for a representative case of Phase 1 of the HTC experiments. The analysis showed that microscopic cross sections of 238Pu and 241Am in JEFF-3.2 were somewhat large compared to those of ENDF/B-VII.1 and JENDL-4.0 for the representative case of Phase 1.  相似文献   

14.
Core characteristics of a sodium-cooled fast breeder reactor (FBR) with 750 MWe output using highly decontaminated uranium and plutonium and highly minor-actinide-containing compositions were evaluated using the fast reactor cross-section set generated by the new Japanese nuclear data library JENDL-4.0. The core characteristics were compared with those obtained using the unified cross-section set ADJ2000R in order to investigate the differences between both the results. The effects on the core characteristics caused by the differences in the nuclear data of important reactions and nuclides in the cross-section sets were analyzed by a burnup sensitivity analysis. It was confirmed that adopting JENDL-4.0 to the FBR core design improves the breeding ratio, the burnup reactivity, and the reactivity control balance, because of the differences in the capture cross-sections of U-238 and Pu-239 of both the libraries. The difference in the sodium void reactivity evaluated with both the libraries was less than 1% because the increase caused by the differences in the elastic scattering cross-sections of sodium, the inelastic scattering cross-section, and the μ-average value of U-238 was practically cancelled out by the decrease caused by the differences in the capture cross-sections of Pu-239, the inelastic scattering cross-section of iron, and the capture cross-sections of Am-241.  相似文献   

15.
Evaluation for JENDL-3.3 has been performed by considering the accumulated feedback information and various benchmark tests of the previous library JENDL-3.2. The major problems of the JENDL-3.2 data were solved by the new library: overestimation of criticality values for thermal fission reactors was improved by the modifications of fission cross sections and fission neutron spectra for 235U; incorrect energy distributions of secondary neutrons from important heavy nuclides were replaced with statistical model calculations; the inconsistency between elemental and isotopic evaluations was removed for medium-heavy nuclides. Moreover, covariance data were provided for 20 nuclides. The reliability of JENDL-3.3 was investigated by the benchmark analyses on reactor and shielding performances. The results of the analyses indicate that JENDL-3.3 predicts various reactor and shielding characteristics better than JENDL- 3.2.  相似文献   

16.
Abstract

A conservative methodology is described that would allow taking credit for burnup in the criticality safety analysis of spent nuclear fuel packages. Requirements for its implementation include isotopic and criticality validation, generation of package loading criteria using limiting parameters, and assembly burnup verification by measurement. The method allows credit for the changes in the 234U, 235U, 236U, 238U, 238Pu,239Pu,240Pu,241Pu,242Pu,and 241Am concentrations with burnup. No credit for fission product neutron absorbers is taken. Analyses are included regarding the methodology's financial benefits and conservative margin. It is estimated that the proposed actinide-only burnup credit methodology would save 20% of the transport costs. Nevertheless, the methodology includes a substantial margin. Conservatism due to the isotopic correction factors, limiting modelling parameters, limiting axial profiles and exclusion of the fission products ranges from 10 to 25% k.  相似文献   

17.
Analysis of measured isotopic compositions of four high-burnup BWR MOX fuel samples was performed by using a general-purpose neutronic calculation code SRAC and a continuous-energy Monte Carlo burnup code MVP-BURN. The initial Pu fissile content of the samples was 5.52 wt%, and the burnups ranged from 50 to 80 GWd/t. It is confirmed that a geometrical model including the effect of UO2 assemblies adjacent to the MOX assembly is necessary in the burnup calculations to obtain accurate calculated isotopic compositions. The calculated results of MVP-BURN with JENDL-3.3 taking such effect into account show more accurate results for major actinides (U, Pu, and Am isotopes) and most fission products than those of infinite assembly calculations. The paper also shows the results calculated using SRAC with JENDL-3.3, ENDF/B-VII, and JEFF-3.1.  相似文献   

18.
Sample reactivity experiments on the uncertainty analyses of Pb nuclear data are carried out by substituting Al plates for Pb ones at the Kyoto University Critical Assembly, as part of basic research on Pb–Bi for the coolant. Numerical simulations of sample reactivity experiments are performed with the Monte Carlo calculation code MCNP6.1 together with four nuclear data libraries JENDL-3.3, JENDL-4.0, ENDF/B-VII.0 and JEFF-3.1, to examine the accuracy of cross-section uncertainties of Pb isotopes by comparing measured and calculated sample reactivities. A library update from JENDL-3.3 to JENDL-4.0 is demonstrated by the fact that the difference between Pb isotopes of the two JENDL libraries is dominant in the comparative study, through the experimental analyses of sample reactivity by the MCNP approach. In addition, JENDL-4.0 reveals a slight difference from ENDF/B-VII.0 in all Pb isotopes and 27Al, and from JEFF-3.1 in 238U and 27Al. Based on these results, further experiments are needed to investigate the uncertainties of Bi isotopes with the use of the Pb–Bi and Bi plates.  相似文献   

19.
Critical experiments of two cores each loaded with fresh 5 × 5 test PWR-type fuel rods of 235U enrichment of 3.8 wt% or irradiated 5 × 5 test rods of rod average burnup of 55 GWd/t in the REBUS program were analyzed using diffusion, transport, and continuous-energy Monte Carlo calculation codes coupled with nuclear data libraries based on JENDL-3.2 and JENDL-3.3. Biases in effective multiplication factors k eff's of the critical cores were about ?1:2%Δk for the diffusion calculations (JENDL-3.2), ?0:5%Δk for the transport calculations (JENDL-3.3), and ?0:5 and 0.1%Δk for the Monte Carlo calculations (JENDL-3.3 and JENDL-3.2, respectively). The measured core fission rate and Sc- or Co-activation rate distributions were generally well reproduced using the three types of calculation. The burnup reactivity determined using the measured water level reactivity coefficients was ?2:35 ± 0:07Δk/kk′. The calculated result of the Monte Carlo calculations agreed with it; however, the diffusion and transport calculations overestimated the absolute value by about 7%, which would be mainly attributed to the errors in the calculation of the reactivity caused by changing the fuel compositions from fresh fuel to irradiated fuel.  相似文献   

20.
Burn-up calculation and comparison of the results were carried out to clarify the differences among the following latest evaluated nuclear data libraries: JENDL-3.2, ENDF/B-VI and JEF-2.2. The analyses showed that the differences seen among the current evaluated nuclear data libraries are small for evaluation of the amounts of many uranium and plutonium isotopes. However, several nuclides important for evaluation of nuclear fuel cycle as 238Pu, 244Cm, 149Sm and 134Cs showed large differences among used libraries. The chain analyses for the isotopes were conducted and the reasons for the differences were discussed. Based on the discussion, information of important cross section to obtain better agreement with the experimental results for 238Pu, 244Cm, 149Sm and 134Cs was shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号