首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Indian test blanket module(TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the RD activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices(ITER relevant and DEMO).The Indian Lead–Lithium Cooled Ceramic Breeder(LLCB) blanket concept is one of the Indian DEMO relevant TBM,to be tested in ITER as a part of the TBM program.Helium-Cooled Ceramic Breeder(HCCB) is an alternative blanket concept that consists of lithium titanate(Li_2TiO_3) as ceramic breeder(CB) material in the form of packed pebble beds and beryllium as the neutron multiplier.Specifically,attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions.These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.  相似文献   

2.
China Fusion Engineering Test Reactor(CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO.One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2to ensure tritium self-sufficiency.A concept design for a water cooled ceramics breeding blanket(WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR.Based on this concept,a one-dimensional(1D) radial built breeding blanket was first designed,and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build.A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models,addressing neutron wall loading(NWL),tritium breeding ratio(TBR),fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components.The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design.  相似文献   

3.
本文以中国聚变工程试验堆(CFETR)的氦冷固态包层和水冷固态包层为研究对象,基于蒙特卡罗程序MCNP和计算流体力学程序FLUENT,利用3D-1D-2D耦合方法和伪材料方法,分别对200 MW的氦冷固态包层和水冷固态包层及1.5 GW的水冷固态包层方案进行了核热耦合计算分析。研究结果表明,金属铍的热散射效应和轻水密度是聚变包层核热耦合效应的主要来源,核热耦合效应对氦冷固态包层的影响可忽略,对水冷固态包层的氚增殖比和温度分布有一定程度的影响。  相似文献   

4.
《Fusion Engineering and Design》2014,89(7-8):1341-1345
This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R&D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM.The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R&D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R&D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine.  相似文献   

5.
An upgraded form of China fusion engineering test reactor (CFETR) was investigated for the safety performance. In the current study, modification of the designs were presented with relative tolerance. The steady state were calculated for the new design using Relap5 code. Two accidents were simulated i.e., in-vessel and In-box loss of coolant accident. These accidents were simulated in helium cooled ceramic blanket (HCCB) system for the purpose to investigate the safety measures of the CFETR. It is utmost important to ensure the safety performance of the reactor. In this research, sudden break at blanket system was assumed and calculated different parameters including temperature, pressure and coolant fluxes to observe the differences in pattern during the accident under limited time domain. The research is very important because the design of HCCB is new and there is a need to conduct steady state and transient state of the reactor in order to make sure and authenticate the design and to safer the reactor.  相似文献   

6.
Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor to bridge the gap between ITER and future fusion power plant. As its objectives are to demonstrate generation of fusion power and to realize tritium self-sufficiency, the tritium breeding ratio (TBR) is a key design parameter. In the blanket design and optimization, the structures such as the first wall (FW), cooling plate (CP), stiffening plate (SP), cap and some other design parameters in detailed 3-D model have significant impacts on the tritium breeding performance. Based on a helium cooled solid breeder blanket option for CFETR, the impact analysis of the helium cooled solid blanket structures on tritium breeding performance was performed in this paper. Firstly, the detailed 3D neutronics model was built by using of a CAD to Monte Carlo Geometry conversion tool McCad. Then based on the detailed 3D neutronics model, the impact analyses of the blanket structures on tritium breeding performance were carried out, which include the FW, CP, SP, cap and side wall. By the sensitivity study of the blanket structures on the TBR, it gave the TBR variation trend and references for the blanket design and optimization.  相似文献   

7.
Inelastic scattering of high energy fusion neutrons does affect the performance of fusion blanket based on the choice of different materials. It will also affect the behavior of source neutrons in a subcritical fusion fission hybrid blanket and consequently the transmutation and tritium breeding performance. A fusion fission hybrid test blanket module (HTBM) is designed which is presumed to be tested in a large sized tokamak and plasma neutron source is similar to ITER. In this preliminary design of HTBM the neutron source and loss factors are computed for the detailed neutronic performance analysis. The neutronic analysis of hybrid blanket module is performed for five different TRU fuel types: TRU-Zr, TRU-Mo, TRU-Oxide, TRU-Carbide and TRU-Nitride. In this module design, it is aimed to burn and transmute the TRU nuclides from high-level radioactive waste of PWR spent fuel. The effect of TiC reflector on transmutation and tritium breeding performance of HTBM is also quantified. MCNPX is used for neutronic computations. Neutron spectrum, capture to fission ratio and waste transmutation ratio of each fuel type are compared to evaluate their waste transmutation performance. Tritium breeding ratio is also compared for two coolant options: Li and LiPb eutectic.  相似文献   

8.
ITER blanket system is the reactor’s plasma-facing component, it is mainly devoted to provide the thermal and nuclear shielding of the Vacuum Vessel and external ITER components, being intended also to act as plasma limiter. It consists of 440 individual modules which are located in the inboard, upper and outboard regions of the reactor. In this paper attention has been focused on to a single outboard blanket module located in the equatorial zone, whose nuclear response under irradiation has been investigated following a numerical approach based on the Monte Carlo method and adopting the MCNP5 code. The main features of this blanket module nuclear behaviour have been determined, paying particular attention to energy and spatial distribution of the neutron flux and deposited nuclear power together with the spatial distribution of its volumetric density. Moreover, the neutronic damage of the structural material has also been investigated through the evaluation of displacement per atom and helium and hydrogen production rates. Finally, an activation analysis has been performed with FISPACT inventory code using, as input, the evaluated neutron spectrum to assess the module specific activity and contact dose rate after irradiation under a specific operating scenario.  相似文献   

9.
针对超临界水冷包层中第一壁的运行工况,利用数值计算软件ANSYS中CFX和Workbench两个模块对第一壁结构中的固体域和流体域进行数值分析研究。对比矩形管道和圆形管道内传热及热应力分布发现,矩形管道四个角域强化了壁面流体和主流流体的动量和热量的交换,使传热性能优于圆形管道,而四个角域的存在也造成了该处的应力集中,使结构材料的最大应力明显高于圆形管道。进一步研究冷却剂流向和冷却管道几何结构参数对第一壁结构温度场和应力场的影响发现,在ITER运行工况下,冷却剂流向影响很小,增大冷却管道直径和减小冷却管道最小壁厚均能改善第一壁结构材料中的最高温度,而这两个几何结构参数对第一壁应力的影响较为复杂。  相似文献   

10.
基于RELAP5的中国氦冷固态包层真空室外破口瞬态特性分析   总被引:2,自引:2,他引:0  
利用RELAP5/MOD3.4对中国氦冷固态包层、氦气冷却剂回路和二次侧水冷系统进行建模和系统热工水力安全评价。依据ITER事故分析制定的事故序列,对设计基准真空室外破口进行了瞬态分析,并对比了不同破口位置、面积和停堆方式对第一壁的影响。结果表明:真空室外破口发生在风机的下游较上游危险,且小破口较大破口更危险;若真空室外破口同时包层第一壁破口,也可通过自然循环和辐射换热带走衰变热冷却包层;真空室外破口事故中采用聚变停堆系统的3s停堆方式,可避免第一壁熔化。  相似文献   

11.
The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR).Some updating of neutronics analyses was needed,because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket,including the optimization of radial build-up and customized structure for each blanket module.A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses.The tritium breeding capability,nuclear heating power,radiation damage,and decay heat were calculated by the MCNP and FISPACT code.The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency.The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW.The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60,respectively.The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module # 3.The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time.The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.  相似文献   

12.
Safety analysis of the reference accidental sequence has been carried out for Lead Lithium cooled Ceramic Breeder (LLCB) Test Blanket Module (TBM) system; India's prototype of DEMO blanket concept for testing in International Thermonuclear Experimental Reactor (ITER). The accidental event analyzed starts with a Postulated Initiating Event (PIE) of ex-vessel loss of first wall helium coolant due to guillotine rupture of coolant pipe with simultaneous assumed failure of plasma shutdown system. Three different variants of the sequences analyzed include simultaneous additional failures of TBM and ITER first wall, failure of TBM box resulting in to spilling of lead lithium liquid metal in to vacuum vessel and reactor trip on Loss of Coolant Accident (LOCA) signal from TBM system. The analysis address specific reactor safety concerns, such as pressurization of confinement buildings, vacuum vessel pressurization, release of activated products and tritium during these accidental events and hydrogen production from chemical reactions between lead–lithium liquid metal and beryllium with water. An in-house customized computer code is developed and through these deterministic safety analyses the prescribed safety limits are shown to be well within limits for Indian LLCB-TBM design and it also meets overall safety goal for ITER. This paper reports transient analysis results of the safety assessment.  相似文献   

13.
One of the major ITER goals is test blanket module (TBM) program which is for the demonstration of the breeding capability that would lead to tritium self-sufficiency in a reactor and the extraction of high-grade heat suitable for electricity generation under the ITER fusion environment. While the engineering design of Korean helium cooled solid breeder (HCSB) TBM and its ancillary systems has been performed, a safety assessment on different possible accident scenarios should be carried out for the purpose of licensing. In this paper, accident analyses for several loss of coolant accident (LOCA) cases were performed in order to assess safety aspects of the TBM design using RELAP5/MOD3.2. Since the TBM forms a loop with helium cooling system (HCS) which is one of ancillary systems required for removing heat deposited in the TBM by neutron wall loading and surface heat flux from plasma, it is necessary to model the complete loop for accident analysis. In this study, the helium passage including the TBM and HCS was nodalized for each accident scenario. The TBM and HCS components were modeled as the associated heat structures provided by RELAP5 to include heat transfer across solid boundaries. Based on computational results it was found that current design of the TBM is robust from the safety point of view.  相似文献   

14.
The thermal–hydraulic behavior and safety performance of the Chinese helium-cooled solid breeder (CH HCSB) test blanket module (TBM) with helium cooling system (HCS) has been studied using RELAP5/Mod3.4 code. According to accident analysis specification for TBM, two design basis accidents including loss of off-site power and TBM first wall (FW) ex-vessel coolant pipe break are investigated. The influences of different break locations and plasma termination behaviors are analyzed comprehensively. The results show that natural circulation is established in helium cooling circuit and the TBM can be cooled effectively after loss of off-site power. It is much more critical when the pipe break occurs at the downstream side of the circulator compared with that of upstream side of the circulator. In case of a more serious accident that the ex-vessel break extends to the TBM FW, the results reveal that TBM could be cooled down by natural circulation and radiation. In addition, at the beginning of ex-vessel loss of coolant accident (LOCA), large temperature difference between break and intact TBM FW pipes is found. The accidental results finally show that the integrity of the FW can be guaranteed if the plasma is terminated with a 3 s delay time by fusion power shutdown system (FPSS) in the case of ex-vessel LOCA.  相似文献   

15.
The Chinese fusion engineering test reactor (CFETR) was expected to bridge from the international thermonuclear experimental reactor (ITER) to the demonstration fusion reactor (DEMO). The water-cooled ceramic breeder (WCCB) blanket is one of the blanket candidates for CFETR. In this paper, preliminary thermal hydraulic safety analyses have been carried out using the system safety analysis code RELAP5 originally developed for light water fission reactors. The pulse operation and three typical loss of coolant accidents (LOCAs), namely, in-vessel LOCA, in-box LOCA, and ex-vessel LOCA, were simulated based on steady-state initialization. Simulation results show that important thermal hydraulic parameters, such as pressure and temperature can meet the design criterion which preliminarily verifies the feasibility of the WCCB blanket from the safety point of view.  相似文献   

16.
In this paper, one standard water cooled ceramic breeder blanket sector has been modeled for the Chinese fusion engineering test reactor using RELAP5/MOD3.3 with details of anisotropic structures, positions and nuclear heat of the blanket modules. The multi-pipe manifolds of the current sector design scheme has been designed and analyzed. And an optimized scheme was proposed to further reduce the pressure drop, uniform the flow distribution, and prevent overheating. Also the fusion power excursion transients were simulated to evaluate the system heat removal and recovery ability. The results indicated that high-transient heat flux up to 0.8 MW/m2 can cause sub-cooled boiling of the coolant in the first wall area of certain modules. Coolant returns to single phase soon after the end of the transient. According to the analysis, it is suggested that the blanket modules surrounding plasma have as similar structure design features as possible and sizes of the modules should be kept relatively small so as to obtain a reasonable pressure drop.  相似文献   

17.
《Fusion Engineering and Design》2014,89(9-10):1989-1994
A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the ITER Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.  相似文献   

18.
China has proposed the dual-functional lithium-lead (DFLL) tritium breeding blanket concept for testing in ITER as a test blanket module (TBM), to demonstrate the technologies of tritium self-sufficiency, high-grade heat extraction and efficient electricity production which are needed for DEMO and fusion power plant. Safety assessment of the TBM and its auxiliary system should be conducted to deal with ITER safety issues directly caused by the TBM system failure during the design process. In this work, three potential initial events (PIEs) – in-vessel loss of helium (He) coolant and ex-vessel loss of He coolant and loss of flow without scram (LOFWS) – were analyzed for the TBM system with a modified version of the RELAP5/MOD3 code containing liquid lithium-lead eutectic (LiPb). The code also comprised an empirical expression for MHD pressure drop relevant to three-dimensional (3D) effect, the Lubarsky–Kaufman convective heat transfer correlation for LiPb flow and the Gnielinski convective heat transfer correlation for He flow. Since both LiPb and He serve as TBM coolants, the LiPb and He ancillary cooling systems were modeled to investigate the thermal-hydraulic characteristic of the TBM system and its influence on ITER safety under those accident conditions. The TBM components and the coolants flow within the TBM were simulated with one-dimensional heat structures and their associated hydrodynamic components. ITER enclosures including vacuum vessel (VV), port cell and TCWS vault were also covered in the model for accident analyses. Through this best estimate approach, the calculation indicated that the current design of DFLL-TBM and its auxiliary system meets the thermal-hydraulic and safety requirements from ITER.  相似文献   

19.
《Fusion Engineering and Design》2014,89(7-8):1119-1125
ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R&D activities for each TBM module with the auxiliary system are introduced.The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li4SiO4 pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R&D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.  相似文献   

20.
基于国际热核聚变实验堆(ITER)实验包层方案,提出了一个超临界水冷固态实验包层概念设计方案。设计采用Be作为中子倍增剂,Li4SiO4作为氚增殖剂,CLAM钢作为结构材料。包层第一壁采用多层盘道设计以提高第一壁出口温度,内部采用增殖剂与中子倍增剂分层布置以提高热沉积与氚增殖率。为验证包层设计的可行性,分析计算了三维包层氚增殖率与热沉积的分布,然后根据中子学计算得到的结果对超临界水冷固态实验包层进行了数值模拟研究。结果表明:包层功率密度分布较合理;氚增殖率满足运行中氚自持的要求;在冷却剂出口温度达到500℃条件下材料温度不超过限值。该设计方案能满足中子学设计与热工水力的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号