首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文采用Fluent软件对同轴喷射流冷热流体搅混引起的三维温度振荡现象进行数值模拟。模拟中,分别选取几种代表性的湍流模型,如大涡模拟(LES)、雷诺应力模型(RSM)及标准k-ε模型。并将模拟结果与实验结果进行了对比,发现:LES是最适合预测冷热流体搅混特性的模型;LES可准确预测温度振荡在半径、高度和方位角方向的平均温度,而雷诺平均法(RANS)的结果则延长了流体的混合过程;LES可预测流体的瞬态温度振荡,RANS则无法预测。  相似文献   

2.
CFX中湍流模型用于分析超临界水传热的适用性评价   总被引:1,自引:1,他引:0  
通过两组典型实验数据,对商业软件CFX的12种湍流模型用于模拟超临界水竖直向上流动传热的性能进行评价。研究结果表明:强迫对流时,BSL代数应力模型与实验结果符合最好,但各模型间差异均不大;混合对流时,基于壁面函数的ε类型湍流模型不能模拟传热恶化趋势,自动壁面处理的ω类型湍流模型能模拟出传热恶化的趋势,但各模型预测结果和实验结果相差较大。评价结果表明近壁面的处理方式对模拟结果影响很大。此外,基于湍流普朗特数模拟湍流热流密度及未考虑密度脉动对传热的影响均是导致不能正确模拟超临界水传热行为的因素,建议对湍流模型进行改进。  相似文献   

3.
Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part I, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8 × 104, based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x, y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure.  相似文献   

4.
Eulerian two-fluid models are widely used in nuclear reactor safety and CFD. In these models turbulent diffusion of a dispersed phase must be formulated in terms of the fluctuating interfacial force and the Reynolds stresses. The interfacial force is obtained using the probability distribution function approach by Reeks (1992). This paper is the first application of this force to a case of engineering interest outside homogeneous turbulence. An Eulerian multidimensional two-fluid model for a cylindrical two-phase dispersed particle jet is proposed and compared with experimental data. The averaged conservation equations of mass and momentum are solved for each phase and the turbulent kinetic energy equation is solved for the continuous phase. The turbulent diffusion force and the Reynolds stresses are constituted within the context of the k- model of turbulence. A dissipation term has been added to the k- model for the turbulence modulation by the particles. Once the constitutive relations have been defined, the two-fluid model is implemented in a computational fluid dynamics code. It is shown that when the particles are very small the model is consistent with a convection-diffusion equation for particle transport where the diffusivity is defined according to Taylor's model (Taylor, G.I., 1921. Diffusion by continuous movements. Proc. London Math. Society, A20, pp. 196–211). The two-fluid model is also compared against two experimental data sets. Good agreement between the model and the data is obtained. The sensitivity of the results to various turbulent mechanisms is discussed.  相似文献   

5.
In Part II, we described the unsteady flow simulation and proposed a modification of a traditional turbulence flow model. Computational fluid dynamics (CFD) simulations of an isothermal, fully periodic flow across a tube bundle using unsteady Reynolds averaged Navier-Stokes (URANS) equations, with turbulence models such as the Reynolds stress model (RSM) were investigated at a Reynolds number of 1.8 × 104, based on the tube diameter and inlet velocity. As noted in Part I, CFD simulation and experimental results were compared at five positions along (x; y) coordinates. The steady RANS simulation showed that four diverse turbulence models were efficient for predicting the Reynolds stresses, and generally, SRANS results were marginal to poor, using a consistent evaluation terminology. In the URANS simulation, we modeled the turbulent flow field in a manner similar to the approach used for large eddy simulation (LES). The time-dependent URANS results showed that the simulation reproduces the dynamic stability as characterized by transverse oscillatory flow structures in the near-wake region. In particular, the inclusion of terms accounting for the time scales associated with the production range and dissipation rate of turbulence generates unsteady statistics of the mean and fluctuation flow. In spite of this, the model implemented produces better agreement with a benchmark data set and is thus recommended.  相似文献   

6.
采用ANSYS Fluent程序建立了固体加热功率指数增长的气体冷却模型,分析了瞬态过程中的流动传热特性,通过数值模拟结果与3组实验数据进行对比,研究了标准k-ε模型、标准k-ω模型、过渡SST模型和RSM模型4种典型湍流模型对瞬态过程中流固耦合换热数值模拟结果的影响。通过分析发现:热负载指数提升过程中,热功率一部分用于对流换热,而另一部分仍留在固体内,且热功率提升速率越高,对流换热的占比越低;采用不同湍流模型模拟出的等效表面热流密度均低于实验值,且采用ε类湍流模型的模拟结果与实验数据更接近。  相似文献   

7.
T型管是研究冷热流体混合流动及其引起的温度振荡现象的典型几何模型,而上游带弯头的T型管又是一不可忽视的特殊情形。本文运用计算流体力学软件,采用3种湍流模型(RNG k-ε 模型、SSG雷诺应力模型、LES模型)对上游带弯头T型管内冷热流体的交混现象进行模拟,并与实验数据进行了对比。结果表明:非混合区域如上游弯头内,RNG k-ε 模型、SSG雷诺应力模型的模拟结果与实验结果较吻合,而在混合区内LES模型的模拟结果更能表征实际流动。  相似文献   

8.
为提高核主泵在全工况点的数值模拟精度,研究了数值模拟过程中近壁面网格尺度、湍流模型、流动状态3种因素对计算精度的影响。结果表明,在定常状态下,重整化群(RNG) k-ε湍流模型和标准壁面函数法在近壁面网格尺度(y+)为50左右时具有较高的计算精度,并且其计算精度高于RNG k-ε增强壁面函数法、低雷诺数k-ε和剪切应力传输(SST)k-ω这3种湍流模型的计算精度,但上述不同网格尺度和湍流模型的计算结果均存在较大的计算误差;采用非定常计算时的计算精度明显高于定常计算,能够反映出扬程曲线在关死点附近的驼峰现象,效率的计算精度也有一定改善,更适合于对核主泵进行性能预测。   相似文献   

9.
Validation of a numerical simulation method is carried out for thermal stratification phenomena in the reactor vessel upper plenum of advanced sodium-cooled fast reactors. The study mainly focuses on the fundamental applicability of commercial computational fluid dynamics (CFD) codes as well as an inhouse code to the evaluation of thermal stratification behavior including the simulation methods such as spatial mesh distribution and RANS-type turbulence models in the analyses. Two kinds of thermal stratification tests are used in the validation, which is done for relatively simple- and conventional-type upper plenum geometries with water and sodium as working fluids. Quantitative comparison between the simulation and test results clarifies that when used with a high-order discretization scheme of the convection term, the investigated CFD codes are applicable to evaluations of the basic behaviors of thermal stratification and especially the vertical temperature gradient of the stratification interface, which is important from the viewpoint of structural integrity. No remarkable difference is seen in the simulation results obtained using different RANS turbulence models, namely, the standard kε model, the RNG k-ε model, and the Reynolds stress model. It is further confirmed in a numerical experiment that the distribution of two or more meshes within the stratification interface will lead to accurate simulation of the interface temperature gradient with less than 10% error.  相似文献   

10.
This paper presents the gas distribution analysis by injecting air fountain into the containment and simulations with the HYDRAGON code. Turbulence models of standard k-ε(SKE), re-normalization group k-ε(RNG) and a realizable k-ε(RLZ) are used to assess the effects on the gas distribution analysis during a severe accident in a nuclear power plant. By comparing with experimental data,the simulation results of the RNG and SKE turbulence models agree well with the experimental data on the prediction of dimensionless density distributions. The results illustrate that the turbulence model choice had a small effect on the simulation results, particularly the region near to the air fountain source.  相似文献   

11.
The mitigation of hydrogen in the containment of nuclear reactor after the Loss of Coolant Accident is essential to preserve the structural reliability of the containment. This paper presents the results of the systematic work done by using the HYDRAGON code to investigate the effect of turbulence models on the concentration distribution of hydrogen and to determine the HYDRAGON code thermal-hydraulic simulation capability during a severe accident at the nuclear power plant. The HYDRAGON code is developed by the Department of Engineering Physics, Tsinghua University, which is an independent research program. The influence of various types of turbulence models, i.e. a standard k ? ? model, a re-normalized group (RNG) k ? ? model, and a realizable k ? ? model were analyzed and the simulation results were compared with the experimental data. When simulation results were compared to experimental data, it was found that, in most compartments, the standard k ? ? model generally yielded reasonable agreement with the experimental results as compared to RNG k ? ? and realizable k ? ? models; however, for probes P7 and P12, better trend was captured by RNG k ? ? and realizable k ? ? models, respectively.  相似文献   

12.
13.
The paper discusses heat transfer enhancement and deterioration phenomena observed in experimental data for fluids at supercritical pressure. The results obtained by the application of various CFD turbulence models in the prediction of experimental data for water and carbon dioxide flowing in circular tubes are firstly described. On this basis, the capabilities of the addressed models in predicting the observed phenomena are shortly discussed.  相似文献   

14.
Heat transfer in upward flows of supercritical water in circular tubes and in tight fuel rod bundles is numerically investigated by using the commercial CFD code STAR-CD 3.24. The objective is to have more understandings about the phenomena happening in supercritical water and for designs of supercritical water cooled reactors. Some turbulence models are selected to carry out numerical simulations and the results are compared with experimental data and other correlations to find suitable models to predict heat transfer in supercritical water. The comparisons are not only in the low bulk temperature region, but also in the high bulk temperature region. The two-layer model (Hassid and Poreh) gives a better prediction to the heat transfer than other models, and the standard k high Re model with the standard wall function also shows an acceptable predicting capability. Three-dimensional simulations are carried out in sub-channels of tight square lattice and triangular lattice fuel rod bundles at supercritical pressure. Results show that there is a strong non-uniformity of the circumferential distribution of the cladding surface temperature, in the square lattice bundle with a small pitch-to-diameter ratio (P/D). However, it does not occur in the triangular lattice bundle with a small P/D. It is found that this phenomenon is caused by the large non-uniformity of the flow area in the cross-section of sub-channels. Some improved designs are numerically studied and proved to be effective to avoid the large circumferential temperature gradient at the cladding surface.  相似文献   

15.
对三角形排列紧密栅元通道内的空气湍流流动进行了数值研究,系统考察了涡粘性和雷诺应力两类湍流模型模拟紧密栅元通道内流动特征的适用性.结果表明:SSG雷诺应力模型对流动有较好的模拟,这说明湍流各项异性的模拟在紧密栅元中十分重要;不同雷诺数和几何结构下的模拟显示,二次流的大小和雷诺数的相关性不大.但随着棒间距和棒径比(P/D)的增大,二次流减小.  相似文献   

16.
利用计算流体力学(CFD)商业软件CFX 10.0,采用标准k-ε、RNG k-ε以及SST模型3种不同的湍流模型,对矩形管内球形颗粒作2维有序排列所形成的孔隙流道的等温单相流动进行数值模拟,并与Ergun关系式预计值进行对比;探讨球形颗粒的排列方式、直径等对单相流动阻力的影响;研究矩形管内单位长度压降及阻力系数随孔隙雷诺数Re的变化规律(1.5≤Re≤1497)。  相似文献   

17.
Three-dimensional simulations of gas-liquid flow in the bubble column using the Euler-Euler approach is presented. The attempt is made to assess the performance and applicability of different turbulence models namely, k-?, k-? RNG, k-ω, Reynolds stress model (RSM) and large eddy simulation (LES) using a commercial code (ANSYS-CFX). For this purpose, the predictions are compared against the experimental data of Kulkarni et al. (2007). Performance of the turbulence models is assessed on basis of comparison of axial liquid velocity, fractional gas hold-up, turbulent kinetic energy and turbulent eddy dissipation rate. All the non-drag (turbulent dispersion, virtual mass and lift force) and drag force were incorporated in the model. The low-Reynolds number treatment of the k-ω yields a better qualitative prediction than the k-? model. The RSM predictions are comparable with LES results and seemed to give better prediction near the sparger, where the flow is more anisotropic and gives a clue why RANS approaches fails to predict the flow in this region. However, the large eddy simulations showed good agreement with the experimental data, but requires higher computational time than RSM.  相似文献   

18.
Performances of various turbulence models are evaluated for calculation of detailed coolant velocity distribution in a tight lattice fuel bundle. The individual models are briefly outlined and compared with respect to the prediction of wall shear stress and velocity field, for a fully developed flow inside a triangular lattice bundle. Comparisons clearly show the importance of proper modeling of the turbulence-driven secondary flows in subchannels. A quadratic k model, which showed promising capability in this respect, is adjusted in its coefficients, and the adjusted model is applied to fully developed flow in an infinite triangular array, with various Reynolds numbers. The results show that the inclusion of adequate anisotropy modeling enables to accurately reproduce the wall shear stress distribution and velocity field in tight lattice fuel bundles.  相似文献   

19.
超临界压力下的流体因拟临界点附近物性的剧烈变化,形成了非常奇特的传热现象。因流体密度突变,在低流量下会引起强烈的浮升力作用,对超临界流体的流动和传热均有极大影响。本工作通过实验获得10 mm单管内传热弱化现象的实验数据,并采用改进的低雷诺数湍流模型,使用数值方法模拟该传热弱化现象。计算结果表明,不同于以往传统的模型会高估壁面温度,改进的低雷诺数湍流模型能较好预测实验结果。数值模拟结果还揭示了浮升力对湍流剪切应力和速度分布的影响,进而引起传热弱化和传热恢复。  相似文献   

20.
从边界层基本特性出发,分析了拟临界区强变物性导致的浮升力效应和流动加速效应对近壁面区域超临界二氧化碳传热特性的影响机理,基于受力分析推导得到了2种效应作用下的超临界流体传热弱化起始点理论判据。研究结果表明,对于加热工况竖直向上流动,浮升力效应和流动加速效应均会导致近壁面区域切应力减弱,进而影响近壁面区湍流的生成与扩散,最终导致传热弱化;2种效应作用下传热弱化起始点判据分别为浮升力因子Bu=1.16×10-5和流动加速因子Ac=2.91×10-6,上述阈值与实验结果吻合良好。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号