首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to clarify the failure mechanism and determine the failure limit of the High-Temperature Gascooled Reactor (HTGR) fuel under reactivity-initiated accident (RIA) conditions, pulse irradiations were performed with unirradiated coated fuel particles at the Nuclear Safety Research Reactor (NSRR). The energy deposition ranged from 0.578 to 1.869 kJ/gUO2, in the pulse irradiations and the estimated peak temperature at the center of the fuel particle ranged from 1,510 to 3,950 K. Detailed examinations after the pulse irradiations showed that the coated fuel particles failed above 1.40 kJ/gUO2, where the peak fuel temperature reached over the melting point of UO2 fuel. It was concluded that the coated fuel particle was failed by the mechanical interaction between the melted and swelled fuel kernel and the coating layer under RIA conditions.  相似文献   

2.
Pulse irradiation experiments with irradiated ATR/MOX fuel rods of 20MWd/kgHM were conducted at the NSRR in Japan Atomic Energy Research Institute to study the transient behavior of MOX fuel rod under reactivity initiated accident conditions. Four pulse irradiation experiments were performed with peak fuel enthalpy ranging from 335 J/g to 586 J/g, resulted in no failure of fuel rods. Relatively large radial deformation of the fuel rods due to pellet-cladding mechanical interaction occurred in the experiments with peak fuel enthalpy above 500 J/g. Significant fission gas release up to 20% was measured by rod puncture measurement. The generation of fine radial cracks in pellet periphery, micro-cracks and boundary separation over the entire region of pellet were observed. These microstructure changes might contribute to the swelling of fuel pellets during the pulse irradiation. This could cause the large radial deformation of fuel rod and high fission gas release when the pulse irradiation conducted at relatively high peak fuel enthalpy. In addition, fine grain structures around the plutonium spot and cauliflower structure in cavity of the plutonium spot were observed in the outer region of the fuel pellet.  相似文献   

3.
In order to investigate the influence of hydrogen embrittlement on fuel failure under reactivity-initiated accident (RIA) conditions, pulse irradiation experiments were performed with unirradiated fuel rods at the Nuclear Safety Research Reactor (NSRR). Fresh cladding was pre-hydrided so that the other factors of cladding degradation, such as irradiation damage and oxidation, were excluded. Hydride clusters are circumferentially oriented and localized in the cladding periphery in order to simulate ‘hydride rim’ which is formed in high burnup PWR cladding. The present study demonstrated hydride-assisted pellet-cladding mechanical interaction (PCMI) failure which has been observed in high burnup fuel experiments. The fuel enthalpy at failure was lower when the cladding had a thicker hydride rim where surface cracks were easily generated. It indicates that the failure limit is highly correlated with the stress intensity factor assuming that the crack depth is equivalent to the hydride rim thickness. Hence, we conclude that hydride rim formation is the primary factor of decreasing the failure limit for high burnup fuels. Based on the experimental results together with an analysis on cladding mechanical state during PCMI, the present study suggests a process of through-wall crack generation which is originated with brittle cracking within the hydride rim.  相似文献   

4.
5.
For RIA-simulated experiments in the NSRR with high-burnup PWR fuel and BWR fuel, numerical analyses were performed to evaluate the temporal changes of profiles of temperature and thermal stress in pellet induced by pulse power, using the RANNS code. The pre-pulse states of rods were calculated using the fuel performance code FEMAXI-6 along the irradiation histories in commercial reactors and the results were fed to the RANNS analysis as initial conditions of the rod. One-dimensional FEM was applied to the mechanical analysis of the fuel rod, and the calculated cladding permanent strain was compared with the measured value to confirm the validity of the PCMI calculation. The calculated changes in the profiles of temperature and stress in the pellet during an early transient phase were compared with the measured data such as the internal gas pressure rise, cracks and grain structure in the post-test pellet, anddiscussed in terms of PCMI and grain separation. The analyses indicate that the pellet cracking appearances coincided with the calculated tensile stress state and that the compressive thermal stress suppresses the fission gas bubble expansion leading to grain separation.  相似文献   

6.
7.
In order to examine high burnup fuel performance under power oscillation conditions, two tests of irradiated fuels under simulated power oscillation conditions were conducted in the Nuclear Safety Research Reactor (NSRR). Irradiated fuels at burnups of 56 and 25 GWd/tU were subjected to four to seven power oscillations, which peaked at 50 to 95 kW/m with intervals of 2 s. The power oscillations were caused by quick withdrawal and insertion of six regulating rods of the NSRR with a computerized control. Impacts of cyclic loads on the fuel performance under hypothetical unstable power oscillations arising during an anticipated transient without scram (ATWS) in boiling water reactors (BWRs) were examined in the tests. Deformation of the fuel cladding of the test rods was comparable to those observed in shorter transient tests, which simulated reactivity-initiated accidents (RIAs), at the same fuel enthalpy level up to 368 J/g. The fuel deformation was mainly caused by pellet-cladding mechanical interaction (PCMI) and was roughly proportional to the fuel enthalpy. Enhanced cladding deformation due to ratcheting by the cyclic load was not observed. Fission gas release, on the other hand, was considerably smaller than in the RIA tests, suggesting different release mechanisms in the two types of transients.  相似文献   

8.
Behavior of irradiated fuel rods under power burst conditions by accidental reactivity insertion in light water reactors (LWRs) has been studied in the Nuclear Safety Research Reactor (NSRR). In the experiments, cladding hoop deformation, which reached up to about 10%, was much larger than that of the fresh rods. The current LWR fuel behavior analysis codes, which only take account of the thermal expansion of the fuel pellets for the deformation calculation, under-predicted the plastic deformation of the cladding to be less than about 1%. Fission gas release during the pulse irradiation tests reached as high as 22% in the NSRR irradiated fuel tests. In order to describe these test results, a model of grain boundary fission gases to cause the cladding deformation has been developed and installed in a fuel behavior simulation code, FRAP-T6. In the model, the over-pressurized gases by the pulse irradiation cause grain boundary separation and stress the cladding during the tests. The model assumes that the gases remain in the fuel during the early part of pulse irradiation and are released to the open volume in the rod after the cladding deformation. The model, in combination with a fuel thermal expansion model, GAPCON, which was validated through fresh fuel tests, reproduces the NSRR test results reasonably well.  相似文献   

9.
In-pile experiments of fresh fuel rods under reactivity initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor at the Japan Atomic Energy Research Institute in order to understand the basic pellet cladding mechanical interaction (PCMI) behavior. Rapid fuel pellet expansion due to a power excursion would cause radial and longitudinal deformation of the cladding. This PCMI could be one of the possible incipient failure modes of an embrittled cladding of a high burnup fuel under the RIA conditions.

Basic PCMI behavior was studied by measuring cladding deformation of a fresh fuel rod without complicated irradiation effects. The transient elongation measurements of the fuel with two kinds of gap width indicated not only PCMI-induced cladding elongation, but also reduction of the pellet stack displacement by the cladding constraint. In the tests under a high-pressure and high-temperature condition simulating an operation condition of BWRs, additional ridge-type cladding deformation was generated due to the axial collapse of the cladding. A preliminary analysis for interpretation of the tests was made using a computer code for the transient analysis of fuel rods, FRAP-T6.  相似文献   

10.
Fission gas release in the bump tests was correlated to the deformations of claddings via mathematical product of the number of gas atoms and their residing time on grain boundaries. A positive correlation of the deformations with the product indicated that gas bubble swelling of pellets contributed to the pellet-cladding mechanical interaction (PCMI).

Residual gaps prior to the bump tests turned out to be filled in at the bump terminal level by differential thermal expansion of pellet and cladding. Visible macro cracks existing in the central part of the pellet virtually vanished during the tests due to bubble swelling of the pellet. Together with these observations, quantitative image analysis of pellet porosity showed that the aforementioned PCMI was brought about by combination of differential thermal expansion and bubble swelling.

A model to unify gas release, bubble growth and PCMI simulated well the observed behaviors of fission gas release from bump-tested rods. It was deduced by the model that higher burnup retains a higher potential for PCMI, while power reductions and associated gas releases reduce PCMI.

In the analysis in this paper were used the data of the Rise Transient Fission Gas Release Project.  相似文献   

11.
Among a series of power ramp tests on 25 Zr-lined segment rods of burnup ranging from 43 to 61 GWd/t, five segment rods failed during the power ramp tests. One segment rod irradiated for 3 cycles (43 GWd/t) failed with a pinhole due to PCI/SCC. The rest of higher burnups failed with an axial crack on the outer surface. The failure threshold power tended to decrease as burnup increases.

Post irradiation examinations revealed increased cladding hydrogen absorption and its precipitates in the cladding outer rim after 4 and 5 cycle irradiations, in contrast to a uniform hydride distribution and a small hydrogen content after 3 cycle irradiation. Metallographic observations suggested an axial crack failure mode induced by the combined effects of high stress and hydrides precipitated in a radial direction during power ramp.

The axial crack failure during the power ramp is supposed to be initiated by a cracking of radial hydride formed by hydride re-distribution and re-orientation at the cladding outer rim and to propagate through a process of hydride concentration and precipitation at the crack tip. Research programs of experimental and analytical studies to clarify the conditions of such mechanism are on-going focusing on the hydrogen behavior and mechanical performance of the irradiated cladding.  相似文献   

12.
ABSTRACT

To contribute to the future updating on the Japanese safety criteria for pellet/cladding mechanical interaction (PCMI) failure of light water reactor fuels under reactivity-initiated accident (RIA) conditions, this paper summarizes the recent important outcomes from research programs with the Nuclear Safety Research Reactor (NSRR). Applicability of current criteria, which are defined as a function of fuel burnup and possibility of introducing another parameter for new criteria were evaluated based on the results of the RIA-simulated pulse irradiation tests, post-test examinations, and supporting analytical work, such as the reevaluation of fuel enthalpies in earlier NSRR experiments. Failure-threshold curves based on cladding hydrogen content as a primary measure of fuel degradation have been proposed as a possible alternative that can be used to judge the occurrence of PCMI failure to ensure conservativeness in a more pertinent manner.  相似文献   

13.
LOCA-simulated experiments were performed with MDA, ZIRLO?, M5®, NDA, and Zircaloy-2 cladding specimens with local burn-ups ranging from 66 to 76 MWd/kg. Short test rods fabricated with the cladding specimens were heated, isothermally oxidized at 1,459 to 1,480K in steam flow, and finally quenched in flooding water. Rod rupture and subsequent double-sided oxidation of the cladding were also simulated in the experiments. Neither split-fracture nor fragmentation occurred during the quench in the cladding specimens which were oxidized to about 18–27% of the metallic thickness. Accordingly, the fracture boundary, a most important safety issue, is not reduced significantly by the high burn-up and use of the new alloys within the examined scope, although it may be somewhat reduced with pre-hydriding during the reactor operation as observed in unirradiated specimens.  相似文献   

14.
Post irradiation examination (PIE) of a high burnt lead fuel assembly, which was irradiated to demonstrate fuel integrity at high burnup, was performed before the start of the full batch loading of high burnup fuel of 48GWd/t maximum fuel assembly burnup.

The lead fuel assembly was 17×17 B-type PWR fuel which was supplied by Nuclear Fuel Industries, Ltd. (NFI) and achieved the maximum burnup of 45 GWd/t after 4 cycles of irradiation in Ohi Unit 1 of the Kansai Electric Power Co. Inc. (Kansai).

Twelve fuel rods extracted from the lead fuel assembly at the reactor site were examined at the hot-cell facility of Japan Atomic Energy Research Institute (JAERI) in Tokai-mura.

Visually, the fuel rods appeared to be in good conditions, but some small spallings were observed at the second span from the top where oxide film was relatively thicker than other spans. Even in this span, the maximum oxide film thickness was less than 50 μm Fission gas release rate was less than 1%, which caused only a small increase in fuel rod internal pressure. Mechanical properties of the fuel cladding were evaluated by tensile tests.

These PIE results were within the range of other PIE data previously obtained from domestic and foreign PWR fuel rods. The data confirmed that the integrity of B-type fuel would be maintained at least up to 48 GWd/t.  相似文献   

15.
Hydride precipitation along the radial-axial plane increases in high burn-up boiling water reactor (BWR) fuel claddings. The radially-oriented hydrides may have an important role during fuel behavior in a reactivity-initiated accident and may reduce ductility of the cladding under pellet-cladding mechanical interaction (PCMI) conditions. In order to promote a better understanding of the influence of the radial hydrides on cladding failure behavior under the PCMI conditions, tube burst tests were conducted for unirradiated BWR claddings charged with 200 to 650 ppm of hydrogen. About 20 to 30% of hydrides were re-oriented and precipitated along the radial-axial plane. The claddings exhibited large rupture openings with an axial crack at room temperature and 373 K. The crack penetrated through cladding wall preferentially along the radial hydrides, and radial cross section showed cladding failure in a brittle manner. However, reduction in residual hoop strain by precipitation of the radial hydrides was very small. It is accordingly expected that ductility of high burn-up BWR cladding is significantly reduced not only by precipitation of radial hydrides as far as hydrogen concentration and radial hydride fraction range in the present study.  相似文献   

16.
The release of volatile fission products from high-burnup UO2 fuel was examined in a steam atmosphere under severe accident conditions as a part of the VEGA program. The effects of fuel oxidation and dissolution were totally evaluated, by comparing the results with those from previous inert, hydrogen and steam atmosphere tests. It was shown that the oxidation of UO2 to UO2+x by steam generally enhances Cs and Kr release. However, the enhancement becomes smaller above the melting temperature of Zircaloy, about 2030 K, likely due to reduction of UO2+x by molten Zircaloy. The burst release of Cs occurs above about 2300K in the hydrogen atmosphere, while the release rate does not increase so significantly for the examined temperature range (<2800 K) in the steam atmosphere. Analysis of the hydrogen atmosphere test showed that fuel dissolution is apparently connected with the burst release and that a large fraction of Cs is quickly released from the dissolved fuel above 2300 K. It is considered that the fuel dissolution rate in the steam atmosphere is about 1/1000 of that in the hydrogen atmosphere.  相似文献   

17.
Radionuclide release from fuel under severe accident conditions has been investigated in the VEGA program at the Japan Atomic Energy Agency. In this program, three types of fuel, two UO2 fuels irradiated at PWR and BWR and a MOX fuel irradiated at the ATR Fugen, were heated up to about 3130K in helium atmosphere at 0.1 MPa. Comparison of experimental data and evaluation with computer code analyses showed that Cs release is essentially identical among the three fuels. The Cs release from fuel may differ below about 1770K due to a difference in migration to grain boundaries during irradiation. The difference was not also observed for releases of poorly volatile elements, namely, U, Pu, Sr and Mo between UO2 and MOX fuels. The release rate of Pu became slightly higher than that of U at 3130 K. The release rate of Sr increased at 3130 K, while that of Mo was quite low at temperatures above 2310 K.  相似文献   

18.
为评价国产燃料棒在较高燃耗水平下的辐照性能,在中国原子能科学研究院燃料与材料检验设施(303热室)对燃耗为40 GW•d/tU的国产压水堆核电站乏燃料棒进行了金相检验。检验内容包括芯块宏观与微观组织、包壳水侧腐蚀与氢化物分布、芯块-包壳相互作用状况等。金相检验结果表明:40 GW•d/tU燃耗下,芯块未发生明显的轮廓变化,气孔率为3.3%~5.8%,晶粒组织为等轴晶,平均晶粒尺寸为7.2 μm;Zr合金最大水侧氧化膜厚度为23 μm,氢化物分布和含量正常,最大氢含量约为150 μg/g,同时不同部位的包壳氢含量与水侧氧化膜厚度基本呈线性关系,水侧腐蚀处于正常水平;包壳内壁有局部轻微腐蚀,包壳与芯块之间存在间隙,未发生包壳与芯块相互作用情况。  相似文献   

19.
The NSRR programme is in progress in JAERI using a pulsed reactor to evaluate the behavior of reactor fuels under reactivity accident conditions. This report describes briefly the experimental results and preliminary analysis of two cluster tests.

In the cluster configuration of five fuel rods, the power distribution in outer fuel rods are not symmetric due to neutron absorption in central fuel rod. The cladding temperature on the exterior boundaries of the cluster is higher than that in interior. Good agreement was obtained between the calculated and measured cladding temperature histories. In the 3.8$ excess reactivity test, cluster averaged energy deposition of 237 cal/g-UO2, cladding melting and deformation were limited to the portions of the fuel rods that were on the exterior boundaries of the cluster.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号