首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This research presents the results of calculating the disposal cost efficiency for the four disposal alternatives for the CANDU spent fuel that are under development in Korea currently. The KRS-1 alternative, developed first, was set as the standard, and the efficiency of the KRS-1 alternative was assumed to be 100%.The cost calculation result shows that the A-KRS-22, which was developed most recently among the CANDU spent fuel disposal alternatives, manifested −61.7%, −45.7%, −47.0%, −78.9% and −61.7% when compared to the KRS-1 alternative concerning disposal tunnel excavation, disposal hole excavation, bentonite, disposal canister and backfilling.Moreover, the cost calculation method for the dominant cost driver that uses the unit disposal module concept for the calculation of cost efficiency was used. As for the reason that the standard for efficiency measurement was taken per each bundle, it is because the amount of bundle capacity concerning the spent fuel differs by disposal canister.  相似文献   

2.
对于采用干湿法贮存的乏燃料而言,其后处理时面临的最大问题是如何安全高效地将乏燃料等内容物从封焊的密封容器中取出。针对这一问题,基于乏燃料密封容器及其内容物的结构特点,开展了乏燃料密封容器开盖及内容物回取技术研究,综合考虑切割热室使用环境、内容物回取后的收集和转移以及产生废物的收集处理等因素,制定了合理可行的开盖及回取工艺,研制了用于开盖和筒体分段切割的解体装置以及回取和吊装工具,并通过试验验证了工艺的可行性以及研制的工装具的可用性。   相似文献   

3.
Criticality calculations have been performed for a typical spent fuel disposal canister model filled with PWR fuel elements. Geometric and material properties of the disposal canister and disposal holes were modeled based on the Swedish preliminary disposal concept. Direct disposal of 5% enriched 16 × 16 PWR fuel was considered. We performed the calculations of the neutron multiplication factor using various disposal configurations, depending on the initial enrichment, fuel burnup, canister geometry and disposal holes configuration. The results showed that under normal conditions, when the canister is filled with fresh spent nuclear fuel, the system is deeply sub-critical. If it is assumed that the canister is faulty, leaking and filled with ground water, the system may become critical in the case of fresh fuel.  相似文献   

4.
针对自主设计的贮存24组燃耗深度为45 GWD/MTU的乏燃料组件的CHN-24型专用容器临界及辐射屏蔽问题,采用蒙特卡罗程序MCNP,建立CHN-24容器临界及辐射屏蔽计算模型。研究结果表明:正常贮存条件下容器内乏燃料的有效增殖因数(k_(eff))为0.283,发生浸水事故时,k_(eff)随着容器内水位升高逐渐增大,注满水时keff达到最大值0.706;容器表面剂量当量率随浸水量增大而减小;正常贮存条件下,即无水浸入时,容器表面及距表面1 m处的最大剂量当量率值分别为0.42 m Sv·h~(-1)、0.08 m Sv·h~(-1)。以上均符合国际原子能机构规定的临界及剂量安全标准,同时表明蒙特卡罗方法可应用于乏燃料容器的临界及辐射屏蔽安全验证。该研究为我国研发具有自主知识产权的核电乏燃料贮存专用容器提供了一定的参考依据。  相似文献   

5.
To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up,a tight ptich lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors.It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs.Various techniques were proposed to solve these problems.In this work.a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated.BY utilizing numerical simulation technique,it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio(0.98) ,long burn-up(60GWD/t)and negative void reactivity coefficients.  相似文献   

6.
Radioactive Waste Management Limited (RWM) of the Nuclear Decommissioning Authority (NDA) is developing concepts to demonstrate the viability of using a standardised range of disposal canister (DC) designs for geological disposal of high level waste and spent fuel in the UK. The standardised DC are designed for disposal in a geological disposal facility with integrity requirements in the range 10?000 to 100?000 years. International Nuclear Services (INS) is also a subsidiary of the NDA and working with RWM to develop a design of packaging for transporting these DC, which is called the disposal canister transport container (DCTC). Initial studies undertaken by INS focused on optimising payload and geometry for the canister designs. Subsequent studies focused on achieving criticality safety requirements for transport, which established the use of multiple water barriers, were required for higher enriched spent fuels. The results of this initial work were presented at the International Nuclear Engineering society conference at London in 2012. Subsequently, RWM commissioned INS to develop the design of DCTC to a level where it would be viable for licensing as a transport package with appropriate level of technical understanding. A specific requirement of RWM was that the loaded DCTC should be capable of transportation on an existing design of four axle rail wagon, within a gross mass of 90 t, this giving considerable logistic and overall cost benefits. Recent development work has focused on detailed impact, thermal and shielding analysis and how these influence the DCTC transport mass and the position of that mass in relation to the four axle rail wagon, both of which influence its capability for the required transport. In terms of meeting mass limits, achieving the specified radiation shielding performance (neutron and gamma) for the spent fuel was found to be a major challenge. However, of equal challenge was to accommodate the high forces generated under impact accident conditions due to the high mass ratio of contents to container. In order to mitigate these forces, the shock absorber designs needed to be carefully judged because their dimensions were restricted by the rail wagon design. This paper describes the DCTC development work, how the design challenges were addressed and the conclusions reached.  相似文献   

7.
Abstract

General Atomics has developed the model GA-4 legal weight truck spent fuel cask, a high-capacity cask for the transport of four pressurised water reactor (PWR) spent fuel assemblies, and obtained a certificate of compliance (CoC, No. 9226) in 1998 from the US Nuclear Regulatory Commission (NRC). The currently authorised contents for this CoC, however, are much more limiting than the actual capability of the GA-4 cask to transport spent PWR fuel assemblies. The purpose of this paper is to show how the authorised contents can be significantly expanded by additional analyses without any changes to the physical design of the package. Using burn-up credit as outlined in US NRC Interim Staff Guidance 8, Revision 2, the authorised contents can be significantly expanded by increasing the maximum enrichment as the burn-up increases. Use of burn-up credit eliminates most of the criticality imposed limits on authorised package contents, but shielding still limits the use of the cask for higher burn-up, short-cooled fuel. By reducing the number of assemblies transported (downloading) to two and using shielding inserts, even high-burn-up fuel with reasonable cooling times can be transported.  相似文献   

8.
Nuclear power has supplied the national electric power demand for three decades in the Republic of Korea, which has resulted in the accumulation of a large amount of spent fuels. The government has a policy on the temporary storage of these at nuclear power plants at present. In order to establish a proper policy for spent fuel management in the near future, the characteristics and amount of spent fuels should be figured out properly. In this paper, the current status of spent fuels in the Republic of Korea is outlined focusing on the major characteristics of spent fuels such as initial enrichment and discharge burnup. According to the current trend, the average burnup of PWR spent fuels will reach 55 GWd/MtU by the middle of 2010s. Three different kinds of computer programs were developed to supply crucial data regarding spent fuels. The first one was developed to project the amount of spent fuels in the future based on three different projection models. The projection was verified with real spent fuel data. The second Database program was prepared for the analysis of statistics regarding PWR spent fuels. Each PWR spent fuel assembly was specified with 18 items of data such as fuel type, initial enrichment, and discharge burnup. The usefulness of the Database program was illustrated through an analysis of the geological disposal density and cooling time of PWR spent fuels. Disposal area could be reduced by 50% through a proper analysis of the cooling time of PWR spent fuels. Finally, A-SOURCE program was developed to easily calculate source-terms such as decay heat and radionuclide concentration after the pyro-processing of PWR spent fuel assemblies. Linked to the Database program, the A-SOURCE program selected PWR spent fuel assemblies and could calculate the source-terms for any combination of them. An illustration of the usage of the program was demonstrated.  相似文献   

9.
Abstract

The purpose of this paper is to perform a thermal analysis of a spent fuel storage cask in order to predict the maximum concrete and fuel cladding temperatures. Thermal analyses have been carried out for a storage cask under normal, off-normal and accident conditions. The environmental temperature is assumed to be 27°C under the normal condition. The off-normal condition has an environmental temperature of 40°C. An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Four of the eight inlet ducts are assumed to be completely blocked. The accident condition is defined as a 100% blockage of air inlet ducts. The storage cask is designed to store 24 PWR spent fuel assemblies with a burn-up of 55,000 MWD/MTU and a cooling time of 7 years. The decay heat load from the 24 PWR assemblies is 25.2 kW. Thermal analyses of the ventilation system have been carried out for the determination of the optimum duct size and shape. The finite-volume computational fluid dynamics code FLUENT was used for the thermal analysis. From the results of the analysis, the maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal, off-normal and accident conditions.  相似文献   

10.
Deep geological disposal concept is considered to be the most preferable for isolating high-level radioactive waste (HLW), including nuclear spent fuels, from the biosphere in a safe manner. The purpose of deep geological disposal of HLW is to isolate radioactive waste and to inhibit its release of for a long time, so that its toxicity does not affect the human beings and the biosphere. One of the most important requirements of HLW repository design for a deep geological disposal system is to keep the buffer temperature below 100 °C in order to maintain the integrity of the engineered barrier system. In this study, a reference disposal concept for spent nuclear fuels in Korea has been reviewed, and based on this concept, efficient alternative concepts that consider modified CANDU spent fuels disposal canister, were developed. To meet the thermal requirement of the disposal system, the spacing of the disposal tunnels and that of the disposal pits for each alternative concept, were drawn following heat transfer analyses. From the result of the thermal analyses, the disposal efficiency of the alternative concepts was reviewed and the most effective concept suggested. The results of these analyses can be used for a deep geological repository design and detailed analyses, based on exact site characteristics data, will reduce the uncertainty of the results.  相似文献   

11.
The purpose of deep geological disposal of high-level radioactive waste (HLW) including nuclear spent fuels is to isolate and to inhibit the release of radioactive material for a long time so that its toxicity does not affect the biosphere. The main requirement for the HLW repository design is to keep the buffer temperature below 100 °C in order to maintain the integrity of the engineered barrier system. The cooling time of the spent fuels discharged from nuclear power plants is the key consideration factor for the efficiency and economic feasibility of such a repository. We analyze the spacing of the disposal tunnels and pits, the disposal area and the uranium density for the deep geological repository layout to satisfy the thermal requirement of the disposal system. To do this, thermal stability analyses of a disposal system have been performed using varying spent fuel cooling times and spacing of the disposal tunnels and pits. The results show that the time to reach the maximum temperature within the design limit of the temperature in the disposal site is likely to be shortened as the cooling time of the spent fuel becomes shorter. Also it seems that controlling the disposal pit spacing is considered more advantageous than controlling the disposal tunnel spacing to meet the allowable thermal criteria in the repository from thermal and economical points of view. The results of these analyses can be used for a deep geological repository design and detailed analyses with exact site characteristics data will reduce the uncertainty of the results.  相似文献   

12.
79Se and 135Cs are long-lived fission products and are found in high-level radioactive waste (HLW). The estimation of their inventories in HLW is essential for the safety assessment of geological disposal, owing to their mobility in the strata. In this study, the amounts of 79Se and 135Cs in a spent nuclear fuel solution were measured. About 5 g of irradiated UO2 fuel discharged from a commercial Japanese pressurized water reactor (PWR) with a burn-up of 44.9 GWd/t was sampled and dissolved with 50mL of 4M nitric acid in a hot cell for 2 h. After Se and Cs were chemically separated, the amounts of 79Se and 135Cs in the spent nuclear fuel solution were measured by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). The amounts of 79Se and 135Cs were 5:2 ± 1:5 and 447 ± 40 g/MTU, respectively. The results presented in this study, which are the first postirradiation experimental data in Japan, showed good agreement with those obtained by the ORIGEN2 code using the data library of JENDL-3.3.  相似文献   

13.
概要综述了用无源和有源非破坏性分析技术测量动力堆乏燃料组件燃耗的基本原理、方法和实验装置。由电离室和裂变室组成的标准叉型探测器具有性能稳定可靠、分析速度快、操作简单、携带方便等优点。当前,它对LWR组件的燃耗测量值和申报值的偏差在±1%以内。用高分辨γ谱方法(HRGS)测量组件的燃耗,也能达到同样的精度。根据测量得到的中子计数或γ放射性,可以确定组件中可裂变物质的含量。  相似文献   

14.
介绍了根据300#堆乏燃料元件组件的实测剂量数据,对初步设计的乏燃料元件转运屏蔽吊筒的放射性屏蔽进行的详细校核计算。给出了乏燃料元件屏蔽前后不同距离处的剂量率。计算结果与实际验证表明屏蔽吊筒所选取的屏蔽厚度是合适的。  相似文献   

15.
Looking ahead to final disposal of high-level radioactive waste arising from further utilization of nuclear energy, the effects of high burn-up of light-water reactors (LWR) with UO2 and MOX fuel and extended cooling period of spent fuel on waste management and disposal were discussed. It was assumed that the waste loading of waste glass is restricted by three factors: heat generation rate, MoO3 content, and platinum group metal content. As a result of evaluation for effects of extended cooling period, the waste loading of waste glass from both UO2 and MOX spent fuel could be increased in the current vitrification technology. For the storage of waste glass from MOX spent fuel with higher waste loading, however, those waste glass require long storage period prior to geological disposal because decay heat of 241Am contributes significantly. Therefore, the evaluation of effects of Am separation on the storage period was performed. Furthermore, heat transfer calculation was carried out in order to evaluate the temperature of buffer material in a geological repository. The results showed, 70 to 90% of Am separation is sufficiently effective in terms of thermal feasibility of a repository.  相似文献   

16.
Analysis of recent data reported in the literature on low temperature swelling and densification behavior of light water reactor (LWR) fuel suggests that, at low irradiation temperatures, the extent of irradiation induced densification shows a simple exponential dependence on burnup with a rate constant that is insensitive to temperature and flux level. These data are also consistent with the view that the total porosity controls the kinetics of irradiation-induced densification process. In the same temperature range the rate of swelling was found to be constant to a burnup near 50 GWD/MTU, with a value of approximately 1% per 10 GWD/MTU. The significance of these results is discussed in terms of current theories.  相似文献   

17.
The Japanese geological disposal programme has started researching disposal of spent nuclear fuel (SF) in deep geological strata (hereafter “direct disposal of SF”) as an alternative management option other reprocessing followed by vitrification and geological disposal of high-level radioactive waste. In the case of direct disposal of SF, the radioactivity of the waste is higher and the potential effects of the radiation are greater. Specific examples of the possible effects of radiation include increased amounts of canister corrosion; generation of oxidizing chemical species in conjunction with decomposition of groundwater and accompanying oxidation of reducing groundwater; and increase in the dissolution rate of SF and the solubility of radionuclides. Focusing especially on the effects of α-radiation in safety assessment, this study has reviewed research into the effects of α-radiation on the SF, canisters and environment outside the canisters.  相似文献   

18.
The U.S. Department of Energy (DOE) began studying Yucca Mountain in 1978 to determine whether it would be suitable for the nation’s first long-tem geologic repository for over 70,000 metric tons of spent (or used) nuclear fuel and high-level radioactive waste. The purpose of the continuing Yucca Mountain study, or project, is to comply with the Nuclear Waste Policy Act of 1982 as amended in 1987 and develop a national disposal site for spent nuclear fuel and high-level radioactive waste disposal. In 2005, DOE shifted the design of the proposed repository from a concept of unloading spent nuclear fuel from transportation canisters and loading into disposal canisters (which required a great deal of handling radioactive material at the repository site) to a “clean” facility, unveiling the transportation, aging, and disposal (TAD) canister system. The TAD waste system consists of a canister loaded with commercial spent nuclear fuel.This review paper provides a comprehensive review on the status of TAD, technical and licensing requirements, the work that has been done so far, and the challenges and issues that must be addressed before TAD can be successfully implemented. Though the future of the Yucca Mountain project is bleak at this point, the progress that has come in the field of TAD will be one of its lasting legacies.  相似文献   

19.
在中国实验快堆(CEFR)上建立了实验组件燃耗分布测量的实验装置。对CEFR某一辐照实验组件中的4#及6#燃料元件棒进行了相对燃耗分布的测量,并与理论计算结果进行了比较。结果表明:两根燃料元件棒虽处于实验组件的不同位置,但相对燃耗分布基本一致;燃耗分布的实验测量结果与理论计算结果符合较好;实验组件燃耗分布测量的相对误差在10.2%以内。本文工作为开展快堆乏燃料组件燃耗测量奠定了基础。  相似文献   

20.
One of the key aspects in designing Spanish spent nuclear fuel canister for geological repository is selecting the inner material to be placed between the steel walls and the fuel assemblies. This material has to primarily avoid the possibility of a criticality event once the canister gets breached by corrosion and flooded by groundwater. A detailed set of requirements for a material to fulfil this role in that environment have been devised and presented in this paper. With these requirements in view, eight potentially interesting candidates were evaluated: cast iron or steel, borosilicate glass, spinel, depleted uranium, dehydrated zeolites, haematite, phosphates, and olivine. Among these, the first four materials or their families are found promising for this application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号