首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The measured isotopic compositions of fuel samples taken from high-burnup spent PWR MOX and UO2 assemblies in the MALIBU program has been analyzed by lattice physics codes. The measured isotopes were U, Np, Pu, Am, and Cm isotopes and about 30 major fission product nuclides. The codes used in the present study were a continuous-energy Monte Carlo burnup calculation code (MVP-BURN) and a deterministic burnup calculation code (SRAC) based on the collision probability method. A two-dimensional multi-assembly geometrical model (2 × 2 model) was mainly adopted in the analysis in order to include the fuel assemblies adjoining the relevant fuel assembly, from which the samples were taken. For the MOX sample, the 2 × 2 model significantly reduces the deviations of the calculated results from the measurements compared with a single assembly model. The calculation results of MVP-BURN in the 2 × 2 model reproduce the measurements of U, Np, and Pu isotopes within 5% for the MOX sample of 67 GWd/t. The deviations of their calculated results of U, Np, and Pu isotopes from the measurements are less than 7% for the UO2 sample of 72 GWd/t.  相似文献   

2.
The measured pellet average inventories of actinides and fission product nuclides on the fifteen samples taken from a three-cycle irradiation BWR 8×8-2 UO2 assembly were compared with those of assembly burnup calculations using a collision probability method (SRAC) with the JENDL-3.2 nuclear data library. The present calculations overestimate the inventories of 235U, well reproduce those of 239Pu and 240Pu, yet underestimate those of 236U, 237Nd, 238Pu, 241Pu, and 242Pu. The inventories of minor actinides are underestimated by the present analysis except for 241Am. The major FP nuclides contributing to neutron absorption such as Nd, Cs, Eu, and Sm are almost well reproduced by the present calculations. The measured pellet average burnups and major actinide inventories on the twenty samples taken from four BWR 8×8-4 UO2 assemblies were also compared with those of the burnup calculations using SRAC and a continuous energy Monte Carlo burnup analysis code (MVP-BURN). Most of the calculated pellet average burnups of both codes agree with the measurements within the range of ±10%. The general trends of the measured pellet radial distributions of actinide and FP nuclides on six samples of the 8×8-4 UO2 assemblies were well reproduced by the burnup calculations of MVP-BURN.  相似文献   

3.
The atomic fractions of 238Pu and 241Am in MOX fuels recycled in light water reactors are 1% to 2% and not significant compared with those of major Pu isotopes. On the other hand, recent evaluated nuclear data libraries, such as JENDL-4.0 and JEFF-3.2, give noticeably different thermal and epithermal neutron capture cross sections for 238Pu and 241Am. The thermal neutron capture cross sections of 238Pu and 241Am in JEFF-3.2 are 31% and 9% larger than those of JENDL-4.0, respectively. This paper shows the effect of the differences in the neutron cross sections on analysis results of two different integral experiments. The first is the isotopic compositions of 238Pu on UO2 and MOX fuels irradiated in BWR and PWR, and the second is the critical experiments of the water moderated cores fully loaded with MOX fuels. The former was analyzed by using the continuous energy Monte Carlo burnup calculation code MVP-BURN and the latter by the continuous energy Monte Carlo calculation code MVP. The comparisons between the calculated and measured results indicate that the most likely thermal and epithermal neutron capture cross sections of 238Pu and 241Am should be around at the middle between those of JEFF-3.2 and JENDL-4.0.  相似文献   

4.
Measured isotopic compositions of UO2 and MOX fuel samples taken from irradiated light water reactor fuel assemblies were analyzed by CASMO5 coupled with a JENDL-4.0 base library to assess the uncertainties in the calculated isotopic compositions on heavy and fission product nuclides. The burnup calculations for the analysis were performed based on a single-assembly model taking into account the detail fuel assembly specifications and irradiation histories. For the MOX fuel samples, a multiple-assembly model was also adopted taking into account the effect of the surrounding UO2 fuel assemblies. The average and standard deviation of the biases (C/E ? 1's (here C and E are calculated and measured results, respectively)) were calculated for each nuclide separately on the PWR and BWR UO2 fuel samples. The averaged biases for 235U, 236U, 239Pu, 240Pu, 241Pu and 242Pu were 2.7%, ?0.9%, 0.3%, 0.7%, ?2.4% and ?1.7% for PWR UO2 samples, and 6.7%, ?1.5%, 2.5%, ?0.6%, 0.4% and ?0.1% for BWR UO2 samples, respectively. The biases with the single-assembly model on the MOX fuel samples showed large positive values of 239Pu, and application of the multiple-assembly model reduced the biases as reported in our previous studies.  相似文献   

5.
The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17 × 17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small.  相似文献   

6.
As part of a validation study of burnup calculations of BWR cores, lattice physics analyses were performed on burnups and isotopic compositions of U, Pu and fission product nuclides measured on five samples taken from 9 × 9 BWR fuel assemblies. Burnup calculations in infinite assembly geometry were carried out using MVP-BURN and SRAC codes coupled with major nuclear data libraries. The burnups determined based on the Nd-148 method were from 27.9 to 64.2 GWd/t. The typical relative differences in isotopic compositions (atom/Total-U) between the burnup calculations and measurements were ?2 ~ 19% for 234U, ?20 ~ 3% for 235U, ?1.5 ~ 0.1% for 236U, ?0.04 ~ 0.02% for 238U, ?4 ~ 11% for 238Pu, ?11 ~ ?2% for 239Pu, ?3 ~ 0% for 240Pu, ?12 ~ ?2% for 241Pu and ?2 ~ 3% for 242Pu. They were ?2 ~ 2% for Nd isotopes, ?15 ~ 7% for Eu isotopes, ?13 ~ 1% for Cs isotopes, ?13 ~ 8% for Sm isotopes, 0 ~ 7% for 147Pm, ?7 ~ ?2% for 95Mo, ?2 ~ ?1% for101Ru and 0 ~ 4% for 103Rh.  相似文献   

7.
Critical experiments were performed in the REBUS program on a core loaded with a test bundle including 16 irradiated BWR-type MOX rods of average burnup of 61 GWd/t. The experimental data were analyzed using diffusion, transport, and continuous-energy Monte Carlo calculation codes coupled with nuclear data libraries based on JENDL-3.2 or JENDL-3.3. Biases in effective multiplication factors of the critical cores were ?1.0%Δk for the diffusion calculations (JENDL-3.2), ?0.3%Δk for the transport calculations (JENDL-3.3), and 0.2%Δk for the Monte Carlo calculations (JENDL-3.2). The measured core fission rate and co-activation rate distributions were generally well reproduced using the three types of calculations. The burnup reactivity determined using the measured water level reactivity coefficients was ?2.41 ± 0.08%Δk/kk’, which also agreed with the results of the three type of calculations within the measurement and calculation errors. The most probable isotopic inventories in the irradiated MOX rods was tentatively obtained by using the ratios of the calculation to chemical assay data on a pellet sample, and the burnup reactivity was reanalyzed to split the calculation error into those due to the inventory and reactivity calculations. This approach showed that the inventory calculation error compensated the reactivity calculation error.  相似文献   

8.
Critical experiments of two cores each loaded with fresh 5 × 5 test PWR-type fuel rods of 235U enrichment of 3.8 wt% or irradiated 5 × 5 test rods of rod average burnup of 55 GWd/t in the REBUS program were analyzed using diffusion, transport, and continuous-energy Monte Carlo calculation codes coupled with nuclear data libraries based on JENDL-3.2 and JENDL-3.3. Biases in effective multiplication factors k eff's of the critical cores were about ?1:2%Δk for the diffusion calculations (JENDL-3.2), ?0:5%Δk for the transport calculations (JENDL-3.3), and ?0:5 and 0.1%Δk for the Monte Carlo calculations (JENDL-3.3 and JENDL-3.2, respectively). The measured core fission rate and Sc- or Co-activation rate distributions were generally well reproduced using the three types of calculation. The burnup reactivity determined using the measured water level reactivity coefficients was ?2:35 ± 0:07Δk/kk′. The calculated result of the Monte Carlo calculations agreed with it; however, the diffusion and transport calculations overestimated the absolute value by about 7%, which would be mainly attributed to the errors in the calculation of the reactivity caused by changing the fuel compositions from fresh fuel to irradiated fuel.  相似文献   

9.
Plutonium concentrations and burnup at Pu spots were calculated in U-Pu mixed oxide (MOX) fuel pellets for light water reactors with the neutron transport and burnup calculation code VIMBURN. The calculation models were suggested for Pu spots and U matrices in a heterogeneous MOX fuel pellet. The calculated Pu concentrations and burnup at Pu spots were compared with the PIEs data in a MOX pellet (38.8 MWd/kgHM). The calculated Pu concentrations agreed by 5–18% with the measured ones, and the calculated burnup did by less than 10% with the estimated one with the measured Nd concentrations. Commercial PWR types of MOX fuels were also analyzed with the calculation code and the models. Burnup at Pu spot increased as the distance was greater from the radial center of a MOX fuel pellet. Burnup at Pu spots in the peripheral region became 3–5 times higher than pellet average burnup of 40 MWd/kgHM. The diameters (20–100 μm) of Pu spots were not found a significant factor for burnup at Pu spots. In the outer half volume region (outer than r/r o=0.7) of a MOX fuel pellet, burnup at Pu spots exceeded 70MWd/kgHM (the threshold burnup of microstructure change in UO2 fuel pellet) at pellet average burnup of 1430 MWd/kgHM.  相似文献   

10.
When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239Pu and 241Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.  相似文献   

11.
High burnup MOX and UO2 test rods were prepared from the fuel rods irradiated in commercial BWRs. Each test rod was equipped with a fuel center thermocouple and reirradiated in the Halden boiling water reactor (HBWR) in Norway. The burnups of MOX and UO2 test rods reached about 84GWd/tHM and 72GWd/t, respectively. Fuel temperature was measured continuously during the re-irradiation tests. Thermal conductivity change in high burnup fuel was evaluated from the results of comparison between the measured fuel temperature and the data calculated by using the fuel analysis code FEMAXI-6. The comparison results suggested that the thermal conductivity of MOX fuel pellets is comparable to that of UO2 fuel pellets in the high burnup region around 80 GWd/t. It is probable that the impurity effect of Pu atoms gradually diminishes with increasing burnup because other factors that affect pellet thermal conductivity, such as the accumulation effect of soluble fission products and irradiation-induced defects in crystal lattice, become dominant in a high burnup region.  相似文献   

12.
基于蒙特卡罗方法的三维燃耗计算研究   总被引:2,自引:1,他引:1  
采用通过编写连接MCNP程序和ORIGEN2程序的接口处理程序的方法进行快中子系统的燃耗计算。由MCNP、ORIGEN2、接口处理程序和截面文件组成的软件系统可用于燃料或堆芯非均匀布置快中子系统的燃料同位素成分和燃耗反应性损失计算,在燃耗反应性损失计算中采用了伪裂变产物的方法。介绍程序系统的研制情况,并给出用该软件系统计算中国实验快堆首炉堆芯和OECD/NEAMOX燃料快堆基准题的燃耗计算结果。  相似文献   

13.
Criticality safety of the fuel debris from the Fukushima Daiichi Nuclear Power Plant is one of the most important issues, and the adoption of burnup credit is desired for criticality safety evaluation. To adopt the burnup credit, validation of the burnup calculation codes is required. Assay data of the used nuclear fuel irradiated by the Fukushima Daini Nuclear Power Plant Unit 2 are evaluated to validate the SWAT4.0 code for solving the BWR fuel burnup problem. The calculation results revealed that the number densities of many heavy nuclides and fission products show good agreement with the experimental data, except for those of 237Np, 238Pu, and samarium isotopes. These differences were considered to originate from inappropriate assumption of void fraction. Our results implied overestimation of the (n, γ) cross-section of 237Np in JENDL-4.0. The Calculation/Experiment – 1 (C/E–1) value did not depend on the type of fuel rod (UO2 or UO2–Gd2O3), which was similar to the case of PWR fuel. The differences in the number densities of 235U, 239Pu, 240Pu, 241Pu, 149Sm, and 151Sm have a large impact on keff. However, the reactivity uncertainty related to the burnup analysis was less than 3%. These results indicate that SWAT4.0 appropriately analyzes the isotopic composition of BWR fuel, and it has sufficient accuracy to be adopted in the burnup credit evaluation of fuel debris.  相似文献   

14.
The compositions and quantities of minor actinide (MA) and fission product (FP) in spent fuels will be diversified with the use of high discharged burnup fuels and MOX fuels in LWRs which will be a main part of power reactors in future.

In order to investigate above diversities, we have studied on the calculation method to be used in the estimation of spent fuel compositions and adopted the real irradiation calculation in which axial burnup and moderator distribution are considered in the burnup calculation.

On the basis of the calculations, compositions and burnup quantities of various LWR spent fuels (reactor type: PWR and BWR, discharged burnup: 33, 45 and 60 GWd/tHM, fuel type: U02 and MOX) are apparently estimated among various forms of fuels. As an example, it is shown that there are considerable discrepancy in MA burnup between PWR and BWR spent fuels.  相似文献   

15.
新一代压水堆与现有压水堆的重要区别之一是燃料富集度不同,考虑到燃料制造、燃料燃耗等问题,目前压水堆的UO2燃料富集度通常小于5%,MOX燃料中易裂变Pu含量通常小于6%。新一代压水堆的燃料富集度有可能超过现有标准,平均燃耗有望达到70 GW•d/tU,这对反应堆计算软件提出了新的要求。本文基于反应堆蒙特卡罗程序cosRMC对新一代压水堆栅元和组件基准进行了中子学分析,包括裂变反应率分布、中子通量密度分布及核子密度随燃耗的变化等,并对含Gd棒的组件燃耗计算进行了细致分析。计算结果表明,cosRMC的计算结果与国际上其他程序的计算结果符合较好。通过程序之间结果对比发现,随着燃耗的增加,不同程序计算的Pu含量差别变大。  相似文献   

16.
The temperature measurements of mixed oxide (MOX) and UO2 fuels during irradiation suggested that the thermal conductivity degradation rate of the MOX fuel with burnup should be slower than that of the UO2 fuel. In order to explain the difference of the degradation rates, the quasi-two phase material model is proposed to assess the thermal conductivity degradation of the MIMAS MOX fuel, which takes into account the Pu agglomerate distributions in the MOX fuel matrix as fabricated. As a result, the quasi-two phase model calculation shows the gradual increase of the difference with burnup and may expect more than 10% higher thermal conductivity values around 75 GWd/t. While these results are not fully suitable for thermal conductivity degradation models implemented by some industrial fuel manufacturers, they are consistent with the results from the irradiation tests and indicate that the inhomogeneity of Pu content in the MOX fuel can be one of the major reasons for the moderation of the thermal conductivity degradation of the MOX fuel.  相似文献   

17.
For the precise calculation of the burnup of minor actinide isotopes, a code system-SWAT has been developed. This system analyzes burnup problems with neutron spectrum that depends on the type of a reactor and the irradiation history, using latest evaluated nuclear data files JENDL-3 or ENDF/B-Vl. The post irradiation test in TRINO and the recent experiment in typical PWRs in Japan were analyzed with SWAT. These analyses show that the results of U and Pu for high burnup fuels almost agree with experimental results but those for middle burnup fuels do not agree with them. The results for Am and Cm isotopes still have large discrepancy. The average C/E of 243Am is –0.79, and that of 244Cm is –0.70 for high burnup (–33,000 MWd/tU) samples.

For middle burnup (–25,000 MWd/tU) samples, the C/E for 244Cm is over 2.0. The discrepancy is partially explained by considering the power peaking history of first cycle and second cycle.  相似文献   

18.
The sensitivity coefficients of neutronic performance parameters in high-conversion LWR cells have been calculated by means of the SAINT code. In order to show the specific features of the sensitivity coefficients in the HCLWR cells, the differences between sensitivities were investigated for cells with different moderator to fuel volume ratios and different Pu enrichments. The burnup dependence of the sensitivities was also discussed with an emphasis on the effect of fission products on the cell parameters.

We have performed the sensitivity analysis for the PROTEUS cores. Group constants of main heavy nuclides were compared for the different cell calculational methods; SRAC and VIM, and the different cross section libraries; JENDL-2 and ENDF/B-IV. The effect of the differences in group constants was estimated for the cell parameters k , reaction rate ratio and coolant void worth. The differences in the 238U capture and 239Pu fission group constants in the resolved and unresolved resonance range produced 0.3~1.0% change in k and 1~6% change in the coolant void worth. These effect was largely dependent on the coolant void fraction.  相似文献   

19.
超临界水冷堆MOX燃料特性分析   总被引:2,自引:0,他引:2  
针对超临界水冷堆组件,采用不同Pu含量的MOX燃料进行组件计算,得到不同燃料条件下的燃耗深度、功率分布因子、慢化剂温度反应性系数等结果,并对比分析在超临界水冷堆中应用MOX燃料与应用UO2燃料对组件性能的影响,以及不同Pu含量MOX燃料间的性能区别。分析结果表明,在超临界水冷堆设计中,应用MOX燃料与应用UO2燃料有相似的功率分布,应用MOX燃料可以增加燃耗深度,并有良好的慢化剂温度反应性系数。经过合理设计的MOX燃料可较好应用于超临界水冷堆中,且产生更好的性能。  相似文献   

20.
The perturbation theory based on the transport calculation has been applied to study sensitivity of neutron multiplication factors (keff's) to neutron cross sections used for the reactivity analysis of UO2 and MOX core physics experiments on light water reactors. The studied cross sections were neutron capture, fission and elastic scattering cross sections, and a number of fission neutrons, ν. The obtained sensitivities were multiplied to relative differences in the cross sections between JENDL-4.0 and JENDL-3.3 in order to estimate the reactivity effects. The results show that the increase in keff, 0.3%Δk/kk′, from JENDL-3.3 to JENDL-4.0 for the UO2 core is mainly attributed to the decreases in the capture cross sections of 238U. On the other hand, there are various contributions from the differences in the cross sections of U, Pu, and Am isotopes for the MOX cores. The major contributions to increase in keff are decreases in the capture cross sections of 238U,238Pu, 239Pu, and those to decrease in keff are decreases in ν of 239Pu and increases in the capture cross sections of241Am. They compensate each other, and the difference in keff between JENDL-3.3 and JENDL-4.0 is less than 0.1%Δk/kk′ and relatively small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号