首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
双压力泵源系统是机载液压系统发展方向之一。分析双压力柱塞泵的工作原理;以AMESim工程软件为平台,建立双压力柱塞泵仿真模型,对双压力柱塞泵的动态特性进行仿真分析。仿真结果符合设计要求,为机载双压力柱塞泵的优化设计提供了依据。  相似文献   

2.
介绍了飞机液压系统的热力学特性和AMESim工程软件的特点,运用该软件建立了某型飞机液压系统的温度计算模型,并对液压系统在两种任务剖面的温升情况进行了仿真分析,为该系统改装提供了热力学方面的参考.  相似文献   

3.
分析了恒压变量柱塞泵的工作原理和机能,利用AMESim的液压机械信号库建立该型恒压变量柱塞泵的仿真模型,根据恒压变量柱塞泵实际的结构与尺寸设置仿真模型的各个参数,对恒压变量柱塞泵静动态特性进行仿真研究,得出了恒压变量柱塞泵工作时泵口的压力和流量特性曲线。将其与恒压变量柱塞泵的流量压力样本特性曲线对比,具有一定吻合度,说明所建立的该型恒压变量柱塞泵仿真模型是比较准确的。同时得出了恒压变量柱塞泵的超调量及恒压调整时间。  相似文献   

4.
航空用高压大流量柱塞泵的研究是现代战机机载系统发展方向之一。根据恒压轴向柱塞泵的结构和工作原理,以AMESim工程软件为平台,建立了柱塞泵关键部件模型,并在此基础上建立了高压大流量柱塞泵仿真模型。在柱塞运动方程中引入斜盘摆动速度这一参数,使得对斜盘的力矩分析更符合实际。通过仿真研究,进一步优化了高压大流量柱塞泵设计参数,为机载液压系统高压化设计提供参考。  相似文献   

5.
为研究解决斜盘式轴向柱塞泵的压力、流量特性对液压系统产生的脉动现象,本文在介绍斜盘式轴向柱塞泵工作原理和存在问题的基础上,针对斜盘式柱塞泵的柱塞进行了运动学分析,并利用AMESim液压仿真软件建立了单个柱塞运动学模型和整体泵的模型,确定了影响参数,通过反复调试运行以及系统仿真,得出了发动机转速、斜盘倾角、泵出口处容积以及负荷对斜盘式柱塞泵影响规律的相关参数值。该模型将对轴向柱塞泵加快研究进度、解决压力脉动问题上提供参考。  相似文献   

6.
液压系统在工作过程中,由于阻尼和节流的影响会导致系统发热及压力流量产生波动。分析斜盘式轴向柱塞泵的工作原理,利用仿真软件AMESim建立柱塞泵系统模型,通过仿真计算出不同的阻尼孔孔径及油液黏度下的柱塞泵输出油液脉动系数并进行对比,总结出柱塞泵变量结构参数阻尼孔孔径及油液黏度对脉动特性的影响,为柱塞泵的应用研究提供参考。  相似文献   

7.
王宇强  邓斌  杨帆 《机床与液压》2019,47(9):162-165
考虑影响防折弯系统液压系统油液温度的因素,提出两种液压系统方案,并建立基于AMESim的热力学仿真模型。通过对防折弯系统的两种方案进行仿真和对比,得到有轨电车在一次转弯过程中液压油温升为0.105℃。如果忽略外界的热交换,有轨电车运行一天,防折弯系统液压系统的液压油温升为7.875℃。在不增加冷却系统的条件下,方案1和方案2都满足液压系统散热要求。  相似文献   

8.
旋转配流盘式恒压变量斜轴柱塞泵是液压伺服系统的核心动力元件,采用旋转配流盘的方式实现恒压变量功能,结构简洁,变量机构转动惯量小,稳定性好。通过分析斜轴柱塞泵及旋转配流盘式恒压变量机构的结构形式及原理,利用AMESim软件搭建了变量柱塞泵的整体仿真模型,仿真分析了动、静态性能,并通过试验验证了模型的准确性。构建的仿真模型可以为类似柱塞泵的参数化设计提供可信的理论模型和快速设计方法。  相似文献   

9.
利用Pro/E建立PQ泵的三维模型,导入ADAMS得到动力学模型,结合AMESim中建立的液压控制模型,建立了YL 56型PQ泵的虚拟样机.通过仿真研究了斜盘转轴与泵的转轴存在偏心距对PQ泵的性能的影响,对变量柱塞泵的结构设计提供了一定的参考.  相似文献   

10.
以两行式甘蔗联合收割机液压闭式系统为对象,建立了基于AMESim热力学仿真模型,分析了影响系统温度的因素。结果表明:油箱的散热面积和冲洗阀压力影响温升的权重较低;散热器散热面积、风扇转速、负载和内泄漏量影响温升的权重较高,为闭式液压系统温升校核和元件选型提供参考。  相似文献   

11.
基于COMSOL建立摆线泵模型,对旋转域采用动网格技术、动静区域采用一致对方法实现数据传递。设置相应的边界条件后对泵进行CFD仿真,并通过试验验证仿真模型的可行性。对比不同温度下摆线泵的流场特性。结果表明:试验与仿真误差略微超过5%,仿真模型可行。对比油液在不同温度下的出口流量、压力特性,结果表明:随着油液黏度降低,摆线泵的出口流量均值降低,流量脉动率增加;摆线泵出口压力均值变化很小,但压力脉动率得到较大幅度增加。分析不同温度下摆线泵旋转域截面,结果表明:由于油液黏度降低,使得油液流动性变好,造成在吸油区产生的负压较低,在排油区径向和轴向泄漏增大,使得泵出口流量降低。研究结果为其他泵的仿真提供参考。  相似文献   

12.
以挖掘机用九柱塞双联轴向柱塞泵为模型,利用AMESim液压仿真平台对泵的液压系统进行仿真分析,得到液压泵的压力、流量和效率等变量特性.根据双联泵系统特性,搭建双联泵液压系统仿真模型,分析不同负载信号下的上述各项变量特性.通过搭建的试验台进行试验验证,分析测试结果.结合仿真结果,对液压系统作出较完善仿真分析,为该泵的进一...  相似文献   

13.
以新型汽车机油泵样机为研究对象,采用CAD软件对转子式机油泵内流场进行几何建模,对模型应用非结构化网格生成技术划分网格并进行有限元前处理。在采用k-ε湍流模型的基础上,应用计算流体力学软件模拟稳定工况下机油泵进、出口部分的三维湍流流动,得到了压力等高线云图、流量值、流线图等及机油泵容积效率与转速的关系曲线;对样机进行流量实验,将数值模拟得到的机油泵容积效率和转速曲线与实验特性曲线进行比较,得到模拟结果与实验结果基本吻合。结果证明:数值模拟能够准确地反应机油泵的量特性和特殊流动性能,为机油泵的设计开发和优化改进提供了新的研究方法和技术支持。  相似文献   

14.
针对实际汽车液压转向系统中转向油泵的输出流量高于实际需求的流量的现象,提出了一种含有浮动块的新型平衡式变量叶片泵,该泵具有速度补偿特性,能降低泵的无功功率消耗.同时建立了汽车液压助力转向系统的数学模型和汽车液压动力转向系统的Matlab Simulink仿真模型,对平衡式变量叶片泵选择不同的参数进行输出功率特性仿真,对输出结果进行对比和分析.仿真结果表明,该泵在不同转速条件下的功率输出平稳,可显著减少汽车尾气排放和噪声,节能效果明显.是一种较有应用前景的新型转向叶片泵.  相似文献   

15.
宣元  何琳  陈宗斌 《机床与液压》2021,49(9):171-176
基于面积扫过法计算直线共轭内啮合齿轮泵理论瞬时流量,得到啮合点位置与泵瞬时流量的对应关系,进而求得泵几何流量脉动。产生困油容腔是泵实际运行过程中普遍存在的现象,也是影响泵出口流量平稳性的关键因素。对直线共轭内啮合齿轮泵运行过程进行分析,依据控制容积法将内部流道划分为吸油容腔、排油容腔、齿轮齿间容腔、齿圈齿间容腔和困油容腔。建立直线共轭内啮合齿轮泵AMESim仿真模型,并对泵内部流体运动状态进行分析及仿真验证。结果表明:加入困油容腔的子模型后,该模型能够反映泵实际运行中因困油容腔的产生导致的瞬时流量突变;仿真模型的流量脉动率为2.29%,高于几何流量脉动率(1.71%)。研究结果揭示了泵流量脉动的产生原因及变化规律,为直线共轭内啮合齿轮泵流动特性研究及优化设计工作提供了参考。  相似文献   

16.
杨善国  冯秦淮 《机床与液压》2007,35(12):109-110
建立了混凝土泵泵送系统换向过程的数学模型,采用计算机仿真手段,以HBT80混凝土泵为实例,获得了泵送系统在不同条件下换向时液压缸活塞的加速度动态变化规律,仿真结果为混凝土泵设计提供了参考.  相似文献   

17.
郭琦 《机床与液压》2023,51(19):196-202
针对闭式泵车泵送液压系统建模难度高、关键元件的实际结构参数难以获取导致仿真模型精度低,闭式泵车泵送液压系统的动态特性分析难度大等问题,通过测量泵送液压系统关键元件三维模型,采用AMESim仿真平台进行细节建模,使仿真模型更接近实际。建立各关键元件的仿真模型并根据原理图完成整个回路搭建,开展泵车空泵试验对仿真模型的正确性进行验证,最后控制水阀负载模拟混凝土负载为系统加载。结果表明:仿真模型能准确模拟闭式系统动态曲线变化规律,最大相对误差在8%以下。  相似文献   

18.
基于瑞典Dymola软件,利用容积建模法,分析变量泵的热力学特征,建立其热力学数学模型,并编写温度仿真程序。对变量泵在典型状态参数下进行温度仿真,并在实验室进行试验验证。结果表明,所建立的变量泵热力学模型是有效的,对液压系统的热力学研究具有一定的参考意义。  相似文献   

19.
运用离散相模型( DPM)结合半经验的磨损模型,模拟计算离心泵内非定常固液两相流动,探索固相颗粒运动以及对泵材料磨损的规律。计算中将液相视为连续介质,求解欧拉坐标系下的流体控制方程;把固体颗粒相视为离散介质,在拉格朗日坐标系下求解颗粒运动方程,采用迭代计算方法实现固液两相耦合。选取常用的IS型离心泵作为研究对象,清水作为连续相,石英沙粒作为离散相,粒径为0.05-0.2 mm,泵进口颗粒体积率为0.5%-3%。计算得到了离心泵内固液两相流场特性,得到了泵内固体颗粒群的运动轨迹和材料磨损率分布等有价值的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号