首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, sensitive, and specific method was developed for determining perchlorate anion in lettuce, cantaloupe, bottled water, and milk. A test portion of chopped crop homogenate was extracted with diluted nitric acid and filtered. Milk proteins were precipitated with acetonitrile, and the supernatant, after centrifugation, was cleaned up on a graphitized carbon solid-phase extraction column. Water samples were analyzed directly. All test solutions were syringe filtered and mixed with an 18O4-labeled perchlorate internal standard before ion chromatography-tandem mass spectrometry. A strong anion exchange column eluted with 100 mM ammonium acetate in 50:50 (v/v) acetonitrile/water was interfaced via electrospray ionization to a triple stage quadrupole mass spectrometer operated in the negative ion mode. The labeled internal standard corrected for any sample matrix effects on measured signals. Four parent-to-product ion transitions, for loss of oxygen, were monitored for native and 18O4-labeled perchlorate anion, respectively: 35Cl-perchlorate, m/z 99 --> 83 and 107 --> 89; 37Cl-perchlorate, m/z 101 --> 85 and 109 --> 91. The limit of quantitation was 1.0 microg/kg in lettuce, 2.0 microg/kg in cantaloupe, 0.50 microg/L in bottled water, and 3.0 microg/L in milk. Native perchlorate was recovered from fortified test portions in the range 93-107% for lettuce, 107-114% for cantaloupe, 100-115% for bottled water, and 99-101% for milk.  相似文献   

2.
This article introduces the concept of chiral ion mobility spectrometry (CIMS) and presents examples demonstrating the gas-phase separation of enantiomers of a wide range of racemates including pharmaceuticals, amino acids, and carbohydrates. CIMS is similar to traditional ion mobility spectrometry, where gas-phase ions, when subjected to a potential gradient, are separated at atmospheric pressure due to differences in their shapes and sizes. In addition to size and shape, CIMS separates ions based on their stereospecific interaction with a chiral gas. In order to achieve chiral discrimination by CIMS, an asymmetric environment was provided by doping the drift gas with a volatile chiral reagent. In this study (S)-(+)-2-butanol was used as a chiral modifier to demonstrate enantiomeric separations of atenolol, serine, methionine, threonine, methyl alpha-glucopyranoside, glucose, penicillamine, valinol, phenylalanine, and tryptophan from their respective racemic mixtures.  相似文献   

3.
Hydrocarbon oligomers, high-molecular-weight polymers, and polymer additives have been covered with 2-60 nmol of gold/cm2 in order to enhance the ionization efficiency for static secondary ion mass spectrometry (s-SIMS) measurements. Au-cationized molecules (up to -3,000 Da) and fragments (up to the trimer) are observed in the positive mass spectra of metallized polystyrene (PS) oligomer films. Beyond 3,000 Da, the entanglement of polymer chains prevents the ejection of intact molecules from a "thick" organic film. This mass limit can be overcome by embedding the polymer chains in a low-molecular-weight matix. The diffusion of organic molecules over the metal surfaces is also demonstrated for short PS oligomers. In the case of high-molecular-weight polymers (polyethylene, polypropylene, PS) and polymer additives (Irganox 1010, Irgafos 168), the metallization procedure induces a dramatic increase of the fingerprint fragment ion yields as well as the formation of new Aucationized species that can be used for chemical diagnostics. In comparison with the deposition of submonolayers of organic molecules on metallic surfaces, metal evaporation onto organic samples provides a comparable sensitivity enhancement. The distinct advantage of the metal evaporation procedure is that it can be used for any kind of organic sample, irrespective of thickness, opening new perspectives for "real world" sample analysis and chemical imaging by s-SIMS.  相似文献   

4.
5.
Because of health concerns surrounding widespread exposure to perchlorate, we developed a sensitive and selective method for quantifying perchlorate in human urine using ion chromatography coupled with electrospray ionization tandem mass spectrometry. Perchlorate was quantified using a stable isotope-labeled internal standard ((18)O(4)-perchlorate) with excellent assay precision (coefficient of variation <5% for repetitively analyzed quality control material). Analytical accuracy was established by blind analysis of certified proficiency testing materials prepared in synthetic urine matrix; calculated amounts deviated minimally from true amounts, with percent differences ranging from 2% to 5%. Selective chromatography and tandem mass spectrometry reduced the need for sample cleanup, resulting in a rugged and rapid method capable of routinely analyzing 75 samples/day. The lowest reportable level (0.025 ng/mL) was sufficiently sensitive to detect perchlorate in all human urine samples evaluated to date, with a linear response range from 0.025 to 100 ng/mL. This selective, sensitive, and rapid method will help elucidate any potential associations between human exposure to low levels of perchlorate and adverse health effects.  相似文献   

6.
A short survey of the varieties of the Secondary Ion Mass Spectrometry (SIMS) known at present is given. The principle of quantitative analysis with respect to thin film analysis is discussed. The properties of SIMS and SIIMS (Secondary Ion Imaging Mass Spectrometry) are compared with those of Electron Microprobe Analysis. Results of an analysis of a thin film of titanium oxide and of an FeMn ferrite by means of SIMS and SIIMS are given.  相似文献   

7.
Nanoelectrospray ionization (nanoESI) mass spectrometry was performed on naturally occurring steroid sulfates and unconjugated steroids derivatized to their sulfate esters using precursor ion monitoring. Initially, an extraction method was developed based on a combinatorial approach employed to obtain the most efficient liquid/liquid extraction protocol. The new method allowed unconjugated steroids and their sulfated analogues to be isolated separately in a two-step procedure using diethyl ether/hexane (90:10, v/v) in the first step to extract the unconjugated steroids and chloroform/2-butanol (50:50, v/v) in the second step to extract steroid sulfates. Precursor ion scanning performed with a triple-quadrupole mass spectrometer was used to examine quantitatively the extracted unconjugated and sulfated steroids, where the recovery efficiency averaged 70 and 87%, respectively. In addition, some steroids could be structurally elucidated by employing tandem mass spectrometry. The limit of detection for steroid sulfates from the biological matrix was 200 amol/microL (approximately 80 fg/microL) with only 1 microL of sample being injected. Endogenous levels of the unconjugated and sulfated steroids were detected and quantified from physiological samples including urine and blood. Internal standards, pregnenolone-d4 sulfate and dehydroepiandrosterone-d2 (DHEA), were used for quantitation. Extraction and nanoESI analyses were also performed on cerebrospinal fluid where the neurosteroid DHEA sulfate was detected. The small amount of material consumed (typically less than 20% of the injection volume) suggests that nanoESI has even greater potential for high sensitivity when combined with nanoLC approaches, especially for monitoring reproductive and adrenal steroids, as well as for the analysis of the less abundant neurosteroids.  相似文献   

8.
Secondary ion mass spectrometry (SIMS) is a desorption/ionization method in which ions are generated by the impact of a primary ion beam on a sample. Classic matrix assisted laser desorption and ionization (MALDI) matrices can be used to increase secondary ion yields and decrease fragmentation in a SIMS experiment, which is referred to as matrix enhanced SIMS (ME-SIMS). Contrary to MALDI, the choice of matrices for ME-SIMS is not constrained by their photon absorption characteristics. This implies that matrix compounds that exhibit an insufficient photon absorption coefficient have the potential of working well with ME-SIMS. Here, we evaluate a set of novel derivatives of the classical MALDI matrices α-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) for usability in ME-SIMS. This evaluation was carried out using peptide mixtures of different complexity and demonstrates significant improvements in signal intensity for several compounds with insufficient UV absorption at the standard MALDI laser wavelengths. Our study confirms that the gas-phase proton affinity of a matrix compound is a key physicochemical characteristic that determines its performance in a ME-SIMS experiment. As a result, these novel matrices improve the performance of matrix enhanced secondary ion mass spectrometry experiments on complex peptide mixtures.  相似文献   

9.
New phosphorylated microbial metabolites referred to as phosphoantigens activate immune responses in humans. Although these molecules have leading applications in medical research, no direct method allows their rapid and unambiguous structural identification. Here, we interfaced online HPAEC (high performance anion-exchange chromatography) with ESI-ITMS (electrospray ionization ion trap mass spectrometry) to identify such pyrophosphorylated molecules. A self-regenerating anion suppressor located upstream of electrospray ionization enabled the simultaneous detection of pyrophosphoester by conductimetry, UV and MS. By HPAEC-ITMS and HPAEC-ITMS2, a single run permitted characterization of reference phosphoantigens and of related structures. Although all compounds were resolved by HPAEC, MS enabled their detection and identification by [M-H]- and fragment ions. Isobaric phosphoantigen analogues were also separated by HPAEC and distinguished by MS2. The relevance of this device was demonstrated for phosphoantigens analysis in human urine and plasma. Furthermore, identification of natural phosphoantigens by automatically generated 2D mass spectra from nano-ESI-ITMS is presented. This last technique permits the simultaneous performance of molecular screening of natural phosphoantigen extracts and their identification.  相似文献   

10.
A drift tube capable of simultaneously functioning as an ion funnel is demonstrated in proton transfer reaction mass spectrometry (PTR-MS) for the first time. The ion funnel enables a much higher proportion of ions to exit the drift tube and enter the mass spectrometer than would otherwise be the case. An increase in the detection sensitivity for volatile organic compounds of between 1 and 2 orders of magnitude is delivered, as demonstrated using several compounds. Other aspects of analytical performance explored in this study include the effective E/N (ratio of electric field to number density of the gas) and dynamic range over which the drift tube is operated. The dual-purpose drift tube/ion funnel can be coupled to various types of mass spectrometers to increase the detection sensitivity and may therefore offer considerable benefits in PTR-MS work.  相似文献   

11.
12.
Modifications to a 7 T nano-LC micro-ESI FT-ICR mass spectrometer, including a shorter octopole, approximately 100% duty cycle, improved nano-LC micro-ESI emitter tips, and reverse-phase HPLC resins that require no ion-pairing agent, combine to achieve attomole detection limit. Three peptides in a mixture totaling 500 attomoles (amol) each in water (10 microL, 50 amol/microL) are separated and detected, demonstrating detection from a mixture at low endogenous biological concentration. Two peptides in a mixture totaling 500 amol each in artificial cerebrospinal fluid (1 microL, 500 amol/microL) are separated and detected, demonstrating detection from a mixture at a biological concentration in a biological solvent. The highest sensitivity is attained with arg8-vasotocin, in which a total of 300 amol is detected in artificial cerebrospinal fluid (1 microL, 300 amol/microL) and a total of 100 amol in water (1 microL, 100 amol/microL). Arg8-vasotocin isolated from the pineal gland of rainbow trout is detected, demonstrating the ability of FT-ICR to detect and identify a true endogenous biological analyte.  相似文献   

13.
14.
The surface sensitivity of Bi(n)(q+) (n = 1, 3, 5, q = 1, 2) and C(60)(q+) (q = 1, 2) primary ions in static time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments were investigated for molecular trehalose and polymeric tetraglyme organic films. Parameters related to surface sensitivity (impact crater depth, implantation depth, and molecular escape depths) were measured. Under static TOF-SIMS conditions (primary ion doses of 1 × 10(12) ions/cm(2)), the 25 keV Bi(1)(+) primary ions were the most surface sensitive with a molecular escape depth of 1.8 nm for protein films with tetraglyme overlayers, but they had the deepest implantation depth (~18 and 26 nm in trehalose and tetraglyme films, respectively). The 20 keV C(60)(+2) primary ions were the second most surface sensitive with a slightly larger molecular escape depth of 2.3 nm. The most important factor that determined the surface sensitivity of the primary ion was its impact crater depth or the amount of surface erosion. The most surface sensitive primary ions, Bi(1)(+) and C(60)(+2), created impact craters with depths of 0.3 and 1.0 nm, respectively, in tetraglyme films. In contrast, Bi(5)(+2) primary ions created impact craters with a depth of 1.8 nm in tetraglyme films and were the least surface sensitive with a molecular escape depth of 4.7 nm.  相似文献   

15.
We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix, and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6.4, or ammonium acetate, pH 6.7, significantly increases signal intensity and number of analytes recorded from adult mouse brain tissue sections. Major lipid species measured were glycerophosphoinositols, glycerophosphates, glycerolphosphoglycerols, glycerophosphoethanolamines, glycerophospho-serines, sulfatides, and gangliosides. Ion images from adult mouse brain sections that compare washed and unwashed sections are presented and show up to 5-fold increases in ion intensity for washed tissue. The sample preparation protocol has been found to be applicable across numerous organ types and significantly expands the number of lipid species detectable by imaging mass spectrometry at high spatial resolution.  相似文献   

16.
17.
The self-assembly of Zn(II) ions and bis(terpyridine) (tpy) ligands carrying 120° or 180° angles between their metal binding sites was utilized to prepare metallosupramolecular libraries with the connectivity. These combinatorial libraries were separated and characterized by ion mobility mass spectrometry (IM MS) and tandem mass spectrometry (MS(2)). The 180°-angle building blocks generate exclusively linear complexes, which were used as standards to determine the architectures of the assemblies resulting from the 120°-angle ligands. The latter ligand geometry promotes the formation of macrocyclic hexamers, but other n-mers with smaller (n = 5) or larger ring sizes (n = 7-9) were identified as minor products, indicating that the angles in the bis(terpyridine) ligand and within the coordinative tpy-Zn(II)-tpy bonds are not as rigid, as previously believed. Macrocyclic and linear isomers were detected in penta- and heptameric assemblies; in the larger octa- and nonameric assemblies, ring-opened conformers with compact and folded geometries were observed in addition to linear extended and cyclic architectures. IM MS(2) experiments provided strong evidence that the macrocycles present in the libraries were already formed in solution, during the self-assembly process, not by dissociation of larger complexes in the gas phase. The IM MS/MS(2) methods provide a means to analyze, based on size and shape (architecture), supramolecular libraries that are not amenable to liquid chromatography, LC-MS, NMR, and/or X-ray techniques.  相似文献   

18.
We present the construction and implementation of a compact, low-power ambient pressure pyroelectric ionization source. The source comprises a z-cut lithium niobate or lithium tantalate crystal with an attached resistive heater mounted in front of the atmospheric pressure inlet of an ion trap mass spectrometer. Positive and negative ion formation alternately results from thermally cycling the crystal over a narrow temperature range. Ionization of 1,1,1,3,3,3-hexafluoro-2-propanol or benzoic acid results in the observation of the singly deprotonated species and their clusters in the negative ion mass spectrum. Ionization of triethylamine or triphenylamine with the source results in observation of the corresponding singly protonated species of each in the positive ion mass spectrum. Although processes in which ion formation occurs directly on the highly charged crystal surface may contribute to the observed signal, ion formation appears to result mainly from electrical discharges occurring on the surface of the crystal, from one z face to another. This dielectric breakdown originates from the high electric fields generated at the surface of pyroelectric crystals when they are thermally cycled by as little as 30 K from ambient temperature. Ion formation is largely unaffected by contamination of the crystal faces. This robust source might prove particularly useful in applications where unattended operation in harsh environments, long service lifetimes, and durability are desirable characteristics.  相似文献   

19.
Studies of replication, recombination, and rearrangements at the level of individual molecules of DNA are often limited by problems of resolution or of perturbations caused by the modifications that are needed for imaging. The Combing-Imaging by Secondary Ion Mass Spectrometry (SIMS) (CIS) method helps solve these problems by combining DNA combing, cesium flooding, and quantitative imaging via the NanoSIMS 50. We show here that CIS can reveal, on the 50 nm scale, individual DNA fibers labeled with different, nonradioactive isotopes and, moreover, that it can quantify these isotopes so as to detect and measure the length of one or more short nucleic acid fragments associated with a longer fiber.  相似文献   

20.
Gas-phase ion/molecule chemistry has been combined with ion mobility separation and time-of-flight mass spectrometry to enable the characterization of large poly(ethylene glycol)s (PEGs) and PEGylated molecules (>40 kDa). A facile method is presented in which gas-phase superbases are reacted in the high-pressure source region of commercial TOF mass spectrometers to manipulate the charge states of large ions generated by electrospray ionization (ESI). Charge stripping decreases the spectral congestion typically observed in ESI mass spectra of high molecular weight polydisperse PEGylated molecules. From these data, accurate average molecular weights and molecular weight distributions for synthetic polymers and PEGylated proteins are determined. The average MW measured for PEGylated Granulocyte colony-stimulating factor (rh-GCSF, 40 726.2 Da) is in good agreement with the theoretical value, and a 16 Da mass shift is easily observed in the spectrum of an oxidized form of the heterogeneous PEGylated protein. Ion mobility separations can fractionate PEGs of different chain length; when coupled with charge stripping ion/molecule reactions, ion mobility mass spectrometry (IMMS) offers several analytical advantages over mass spectrometry alone for the characterization of large PEGylated molecules including enhanced dynamic range, increased sensitivity, and specificity. Low abundance free PEG in a PEGylated peptide preparation, which is not directly detectable by mass spectrometry, can be easily observed and accurately quantified with gas-phase ion/molecule chemistry combined with ion mobility mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号